Skip to main content
Geosciences LibreTexts

1.4: The Vertical Atmosphere

  • Page ID
    38602
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Upper-Air Data

    The previous section demonstrated the variation in weather conditions, such as air temperature and precipitation, that occur close to the Earth's surface. However, as we continue in this course, you will also learn that surface weather conditions are greatly dependent on upper-air weather conditions. As a result, Meteorologists need to make observations of changes in weather conditions as we rise vertically in our atmosphere. To gain context of this upper-air data, let’s first understand the basic structure of the atmosphere, as shown in Figure \(\PageIndex{1}\) and Figure \(\PageIndex{2}\). Table \(\PageIndex{1}\) provides a summary of the salient features of Figure \(\PageIndex{1}\) and Figure \(\PageIndex{2}\).

    Atmospheric layers and temperature change with altitude in the atmosphere.
    Figure \(\PageIndex{1}\): Vertical profile of temperature in the atmosphere and atmospheric layers. (Public Domain; Layers of the Atmosphere via NOAA).
    Change in air pressure with altitude in our atmosphere.
    Figure \(\PageIndex{2}\): Vertical profile of pressure in the atmosphere. (Public Domain; Pressure change with Altitude via UCAR)
    Table \(\PageIndex{1}\): Variation in air temperature and pressure with altitude in the atmosphere.
    Altitude (km) Pressure (mb) Temperature (°C) Atmospheric Layer
    0 1013 15 Troposphere
    5 540 -17
    10 365 -56 Tropopause
    15 160 -56 Stratosphere
    20 55 -44
    25 27 -33
    30 12 -15
    35 7 -6
    40 4 -2 Stratopause
    50 1 -2 Mesosphere
    60 0.2 -25
    70 0.04 -50
    80 0.007 -90 Mesopause
    90 0.002 -90 Thermosphere
    100 0.0005 -75
    110 0.00005 -30
    120 0.00001 65

     Using this information, investigate how the temperature and pressure change with height in our atmosphere, as you answer the following questions.

    1. Air Pressure _____ with height in the atmosphere:
      1. increases
      2. decreases
      3. does not change
    1. However, the relationship between air temperature and height _______ as you move from one layer to the next.
      1. does not change
      2. changes
    1. The top of each layer is called a “pause.” For example, the top of the troposphere is called the Tropopause. As suggested in Figure \(\PageIndex{1}\) and Table \(\PageIndex{1}\), what happens when you reach any of the “pauses” in the atmosphere?
      1. The temperature "levels off" (it stops decreasing or increasing).
      2. The temperature suddenly increases.
      3. The temperature suddenly decreases.
    1. As a result, an excellent way to identify the tropopause would be to identify:
      1. Where the temperature stops decreasing.
      2. Where the temperature stops increasing.
      3. A sudden, sharp decrease in temperature.

    While the previous figures and the table provide a basic representation of the “average” atmosphere, the vertical structure of the atmosphere varies greatly from place to place. Therefore, we cannot rely on the “average” atmosphere to determine real-time conditions in the upper atmosphere. Instead, we must make direct observations. We do this by collecting Upper-Air Data, which is done through weather balloon launches.

    Weather Balloons

    Every day at 0000 UTC and 1200 UTC, observers across the United States—and, in fact, around the world—launch weather balloons into the atmosphere at the same time. Attached to each of these weather balloons is an instrument pack called a Radiosonde (Figure \(\PageIndex{3}\)). As the balloon rises, the radiosonde collects data on numerous weather variables that we measure at the surface, such as temperature, dew point, air pressure, wind direction, and wind speed, and relays them to a computer on the ground. These weather balloons can rise as high as 100,000 feet (about 30 km).

    A LMS6 Radiosonde instrument placed on the ground.
    Figure \(\PageIndex{3}\): A Radiosonde instrument. (CC by-SA 4.0; Famartin via Wikimedia Commons) 

    1.4: The Vertical Atmosphere is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by LibreTexts.