1.5: Vertical Atmosphere data charts
- Page ID
- 39630
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Stüve Diagrams
As the weather balloon rises in the atmosphere, the radiosonde continuously collects weather data. This data is then plotted on numerous diagrams for Meteorologists to use to interpret the data. Throughout this course, we will examine more such weather data and many diagrams that assist in analyzing the data. For this investigation, we will focus on upper air temperature profiles. One of the most effective diagrams for plotting upper air temperature data is the Stüve Diagram, which plots temperature as a function of pressure or altitude. In Investigation 5, we will learn more about other features of the Stüve Diagram, but for now, Figure \(\PageIndex{1}\) shows a blank Stüve Diagram.
Data collected from a weather balloon launch with a radiosonde instrument is referred to as a "sounding". Table \(\PageIndex{1}\) shows radiosonde data collected over Tampa Bay, FL, on January 10, 2025. Sounding data in a tabular form typically consists of two columns: atmospheric pressure and the corresponding temperature measured by the instrument at that pressure. We use pressure rather than elevation because Meteorologists look for certain features at particular pressure levels. Higher pressure values correspond to lower altitudes, and lower pressure values correspond to higher altitudes. The data obtained from a sounding can be plotted on a Stüve diagram, just as you’d plot data on a simple X-Y graph. Temperature would be your “X” coordinate, while Pressure would be your “Y” coordinate. On a blank Stüve diagram, find where the first Pressure value (Y-axis) and the corresponding Temperature value (X-axis) intersect, and add a dot or an X there. Repeat this procedure for every Pressure and Temperature point in your table, and then connect your dots with a straight line. This will give you the upper air temperature profile at the location of the sounding.
- Let's analyze the data collected from the Tampa Bay, FL, sounding. Plot the data on a blank Stüve diagram.
| Pressure (mb) | Temperature (°C) |
|---|---|
| 1017 | 06.2 |
| 1000 | 11.0 |
| 970 | 12.2 |
| 930 | 10.2 |
| 925 | 10.0 |
| 894 | 09.9 |
| 850 | 11.8 |
| 800 | 12.3 |
| 746 | 10.2 |
| 700 | 07.0 |
| 598 | 00.7 |
| 500 | -07.3 |
| 400 | -20.5 |
| 300 | -32.9 |
| 250 | -43.9 |
| 200 | -52.3 |
| 140 | -66.5 |
| 100 | -75.5 |
The U.S. Standard Atmosphere
Congratulations! You created a Stüve diagram plot of the temperature profile over Tampa Bay, FL. But, how do we know if the upper air temperature over Tampa Bay is warmer or cooler compared to the rest of the U.S.? To compare radiosonde observations to the “average” condition of the atmosphere, the U.S. Standard Atmosphere was developed. The U.S. Standard Atmosphere is a simple model representation of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. The lower portion of the US Standard Atmosphere only has three points: a temperature of +16 °C at the surface, -56.5 °C at 11 km, and -56.5 °C at 16 km. This data is shown in Figure \(\PageIndex{2}\) with the data recreated in Table \(\PageIndex{2}\).
| Pressure (mb) | Altitude (km) | Temperature (°C) |
|---|---|---|
| 1000 | 0 | 15 |
| 900 | 1 | 8 |
| 800 | 2 | 1 |
| 700 | 3 | -6 |
| 600 | 4 | -13 |
| 500 | 6 | -22 |
| 400 | 7 | -33 |
| 300 | 9 | -45 |
| 250 | 10 | -52 |
| 200 | 11 | -56.5 |
| 175 | 12 | -56.5 |
| 150 | 13 | -56.5 |
| 125 | 14 | -56.5 |
| 100 | 16 | -56.5 |
Remember, the U.S. Standard Atmosphere profile isn't a measured profile of temperature, but an idealized model of the atmosphere. Let's now combine our knowledge of what we learned about our vertical atmosphere in Section 1.4 with the upper air data over Tampa Bay (question 20) and the U.S. Standard Atmosphere (Figure \(\PageIndex{2}\) and Table \(\PageIndex{2}\)) to answer the following questions:
- The tropopause _______ present between the surface and 100 mb over Tampa Bay.
- is
- is not
- The tropopause over Tampa Bay is at a _______ pressure level than the U.S. Standard Atmosphere (NOTE: lower pressure level = higher elevation).
- lower
- about the same elevation as
- higher
- The atmosphere over Tampa Bay is warmer than the U.S. Standard Atmosphere from approximately 970 mb to a pressure level of approximately ______.
- 500 mb
- 200 mb
- 150 mb
- 100 mb

