# 6.4: How is energy related to the wavelength of radiation?

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

We can think of radiation either as waves or as individual particles called photons. The energy associated with a single photon is given by

$E = hν$

where $$E$$ is the energy (SI units of J), h is Planck's constant (h = 6.626 x 10–34 J s), and $$\nu$$ is the frequency of the radiation (SI units of s–1 or Hertz, Hz) (see figure below). Frequency is related to wavelength by $$λ=c/ν$$, where $$c$$, the speed of light, is 2.998 x 108 m s–1. Another quantity that you will often see is wavenumber, $$σ=1/λ$$, which is commonly reported in units of cm–1.

The energy of a single photon that has the wavelength $$λ$$ is given by:

$E=\frac{h c}{\lambda}=\frac{1.986 \times 10^{-16} \mathrm{J} \,\mathrm{nm} \text { photon }^{-1}}{\lambda}$

Note that as the wavelength of light gets shorter, the energy of the photon gets greater. The energy of a mole of photons that have the wavelength $$λ$$ is found by multiplying the above equation by Avogadro's number:

$E_{m}=\frac{h c N_{A}}{\lambda}=\frac{1.196 \times 10^{8} \mathrm{J} \mathrm{nm} \mathrm{mol}^{-1}}{\lambda}$

In the lesson on atmospheric composition, you saw how solar UV radiation was able to break apart molecules to initiate atmospheric chemistry. These molecules are absorbing the energy of a photon of radiation, and if that photon energy is greater than the strength of the chemical bond, the molecule may break apart.

Exercise

Consider the reaction

$\ce{O3 + UV -> O2 + O*}. \nonumber$

If the bond strength between O2 and O* (i.e., excited state oxygen atom) is 386 kJ mol–1, what is the longest wavelength that a photon can have and still break this bond?

$$\lambda=\frac{1.196 \times 10^{8} \mathrm{J} \mathrm{nm} \mathrm{mol}^{-1}}{E_{m}}=\frac{1.196 \times 10^{8} \mathrm{J} \mathrm{nm} \mathrm{mol}^{-1}}{386 \times 10^{3} \mathrm{Jmol}^{-1}}=309 \mathrm{nm}$$