Skip to main content
Geosciences LibreTexts

20.6: When were the Snowballs?

  • Page ID
    22763
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We have already mentioned that when most geoscientists talk about the “Snowball Earth,” they mean the glaciations that occured during the Cryogenian period of the Neoproterozoic era, specifically the Sturtian and the Marioan glaciations. The Sturtian occurred approximately 720 to 710 Ma, and the Marinoan around 660 to 635 Ma. Both the Sturtian and Marinoan glaciations show a global distribution of their sedimentary deposits. Their ages are not determined by fossils, but by relationships with rock units that are datable using isotopic methods (ash deposits, cross-cutting dikes, inclusions of datable rocks etc.).

    Consider this hypothetical demonstration of the relevant information:

    A cartoon cross-section of a glacial deposit (tillite/diamictite) and surrounding geologic units. The tillite includes a clast of granite, dated at 1.2 Ga. The tillite is above strata that include a volcanic ash layer dated at 800 Ma. The tillite is cut across by a granite dike, which has been dated at 500 Ma.
    Figure \(\PageIndex{1}\): The age of this glacial deposit must be: (a) younger than the age of the clasts it contains, including the granite clast dated at 1.2 Ga, (b) younger than the volcanic ash layer stratigraphically below it (800 Ma), and (c) older than the granitic dike that cuts across it (which is 500 Ma). The inclusion date is redundant to the information provided by the ash in this case. We can constrain the age of the glacial deposit to be between 800 Ma and 500 Ma, based on the available information. (Callan Bentley cartoon)

    These techniques are nothing special for Snowball Earth only, but merely the application of general relative dating principles to the question of the timing of Neoproterozoic glaciation.

    Some scientists also consider the slightly younger Gaskiers glacation (635 to 542 Ma, during the Ediacaran period of the Neoproterozoic) as a “Snowball Earth” glaciation. However, the paleomagnetic signatures on Gaskiers deposits are relatively high-latitude, not tropical or equatorial. There are also a lot fewer sites that host Gaskiers-aged strata, though it is recorded from at least eight small paleocontinental landmasses. (This is in contrast to dozens apiece for the Sturtian and Marinoan.) Considering the Gaskiers is younger than the Marinoan and Sturtian, and therefore less likely to have been destroyed by subsequent rock cycle processes, this implies it was truly not as extensive in distribution. Furthermore the Gaskiers glaciation has no known associated banded iron formations, suggesting that ocean water continued to exchange oxygen with the atmosphere during glaciation, and therefore no global sheath of sea ice existed then. Finally, dating of volcanic ash deposits to constrain the age of the Gaskiers glaciation suggest that the entire ice age lasted for only about 340,000 years, which is inconsistent with the multi-million year expectation based on the “Snowball Cycle.”

    Photograph showing an outcrop of poorly sorted diamictite with a bunch of different rock types as large clasts, with a pencil for scale.
    Figure \(\PageIndex{2}\): Gaskiers diamictite, Newfoundland. (Callan Bentley photo)
    Photgraph showing an outcrop of Gowganda Tillite, with a dark matrix and isolated clasts of various sizes of pink granite. A coin provides a sense of scale.
    Figure \(\PageIndex{3}\): Gowganda tillite, Ontario. (Photo by Ron Schott)

    If we go back in time, to the Paleoproterozoic era, we find that there was another episode of glaciation recorded, though whether it was also a true “Snowball” (in the sense of ice reaching all the way to the equator) is a difficult question to answer. It is sometimes called the Huronian glaciation or Makganyene glaciation. It dates to between 2.4 and 2.1 Ga, and is best preserved in North America in Ontario’s Gowganda Formation, a striking jet-black tillite that formed about 2.3 Ga.

    (Being positioned in southern Ontario meant that the Gowganda’s glacial deposits were ideally positioned for plucking by Pleistocene ice age glaciers. This means that in some very young glacial deposits, we can find pieces of very old glacial deposits!)

    Did I Get It? - Quiz

    Exercise \(\PageIndex{1}\)

    Which of the following "Snowball Earth" glaciations happened from 660 Ma to 635 Ma?

    a. Marinoan

    b. Sturtian

    c. Ediacaran

    d. Gaskiers

    Answer

    a. Marinoan

    Exercise \(\PageIndex{2}\)

    What makes the Gaskiers glacation distinct from the Sturtian and Marinoan glaciations?

    a. It is characterized by exceptionally mature deposits of quartz sand, well-rounded pebbles, and rock salt deposits.

    b. It shows a more limited extent, has no banded iron formations, and is the youngest of the three.

    c. It is the only "Snowball Earth" glaciation to occur in the Phanerozoic eon.

    d. It shows a more extensive distribution of deposits, has the largest amount of associated banded iron formations, and is the oldest of the three.

    Answer

    b. It shows a more limited extent, has no banded iron formations, and is the youngest of the three.

    Exercise \(\PageIndex{3}\)

    As precisely as possible, how old is the glacial deposit illustrated in this cross-section?

    undefined

    a. Between 3.2 Ga and 720 Ma (and thus likely Marinoan).

    b. Between 720 Ma and 690 Ma (and thus likely Sturtian).

    c. Between 690 Ma and 330 Ma (and thus likely Gaskiers).

    d. Between 3.2 Ga and 690 Ma (and thus likely Sturtian).

    Answer

    b. Between 720 Ma and 690 Ma (and thus likely Sturtian).

    Exercise \(\PageIndex{4}\)

    Are there any records of glaciation on Earth prior to the Neoproterozoic Snowball Earths?

    a. No

    b. Yes

    Answer

    b. Yes


    This page titled 20.6: When were the Snowballs? is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Callan Bentley, Karen Layou, Russ Kohrs, Shelley Jaye, Matt Affolter, and Brian Ricketts (VIVA, the Virginia Library Consortium) via source content that was edited to the style and standards of the LibreTexts platform.