# B Constants and Conversion Factors

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

# B.3. Earth Characteristics

1° latitude = 111 km = 60 nautical miles (nm) [Caution: This relationship does NOT hold for degrees longitude.]

a = 149.598 Gm = semi-major axis of Earth orbit

A = 0.306 = Bond albedo (NASA 2015)

A = 0.367 = visual geometric albedo (NASA 2015)

b = 149.090 Gm = semi-minor axis of Earth orbit

d = 149.5978707 Gm = average sun-Earth distance = 1 Astronomical Unit (AU) (NASA 2015)

daphelion = 152.10 Gm = furthest sun-Earth distance, which occurs about 4 July (NASA 2015)

dperihelion = 147.09 Gm = closest sun-Earth distance, which occurs about 3 January (NASA 2015)

dr = 173 = 22 June = approx. day of summer solstice

e = 0.0167 = eccentricity of Earth orbit around sun

g = –9.80665 m·s–2 = average gravitational acceleration on Earth at sea level (negative = downward) (from 2014 CODATA)

|g| = go· [1 + A·sin2(ϕ) – B·sin2(2ϕ)] – C·H

= variation of gravitational-acceleration magnitude with latitude ϕ & altitude H (in meters) above mean sea level. go = 9.7803184 m·s–2, A = 0.0053024, B = 0.0000059, C = 3.086x10–6 s–2.

M = 5.9726 x1024 kg = mass of Earth (NASA 2015)

Pearth = 365.256 days = Earth orbital period (2015)

Pmoon = 27.3217 days = lunar orbital period (2015)

Psidereal = 23.9344696 h = sidereal day = period for one revolution of the Earth about its axis, relative to fixed stars

Rearth = 6371.0 km = volumetric average Earth radius (from NASA 2015)

= 6378.1 km = Earth radius at equator

= 6356.8 km = Earth radius at poles

S = 1367.6 W ·m–2 = solar irradiance (solar constant) at top of atmosphere (NASA 2015)

≈ 1.125 K ·m ·s–1 = kinematic solar constant (based on mean sea-level density)

Te = 254.3 K = effective radiation emission black-body temperature of Earth system (NASA 2015)

Φr = 23.44° = 0.4091 radians = tilt of Earth axis = obliquity relative to the orbital plane (2015)

Ω = 0.7292107 x10–4 s–1 = sidereal rotation frequency of Earth (NASA 2015)

2·Ω = 1.458421 x10–4 s–1 = Coriolis factor

2·Ω / Rearth = 2.289 x10–11 m–1 ·s–1 = beta factor

# B.4. Air and Water Characteristics

a = 0.0337 (mm/day) ·(W/m2)–1 = water-depth evaporation per unit latent-heat flux

B = 3 x109 V·km–1 = breakdown potential for dry air

Cvd = 717 J·kg–1·K–1 = specific heat for dry air at constant volume

Cpd = 1003 J·kg–1·K–1 = specific heat for dry air at constant pressure at –23°C

= 1004 J·kg–1·K–1 = specific heat for dry air at constant pressure at 0°C

= 1005 J·kg–1·K–1 = specific heat for dry air at constant pressure at 27°C

Cpv = 1850 J·kg–1·K–1 = specific heat for water vapor at constant pressure at 0°C

= 1875 J·kg–1·K–1 = specific heat for water vapor at constant pressure at 15°C

Cliq = 4217.6 J·kg–1·K–1 = specific heat of liquid water at 0°C

Cice = 2106 J·kg–1·K–1 = specific heat of ice at 0°C

D = 2.11x10–5 m2·s–1 = molecular diffusivity of water vapor in air in standard conditions

eo = 0.611 kPa = reference vapor pressure at 0°C

k = 0.0253 W·m–1·K–1 = molecular conductivity of air at sea level in standard conditions

Ld = 2.834x106 J·kg–1 = latent heat of deposition at 0°C

Lf = 3.34 x105 J·kg–1 = latent heat of fusion at 0°C

Lv = 2.501 x106 J·kg–1 = latent heat of vaporization at 0°C

n = 3.3 x1028 molecules ·m–3 for liquid water at 0°C

nair ≈ 1.000277 = index of refraction for air

nwater ≈ 1.336 = index of refraction for liquid water

nice ≈ 1.312 = index of refraction for ice

PSTP = 101.325 kPa = standard sea-level pressure (STP = Standard Temperature & Pressure)

d = 0.287053 kPa·K–1·m3·kg–1 = Cpd – Cvd

= 287.053 J·K–1 ·kg–1 = gas constant for dry air

v = 461.5 J·K–1·kg–1 = water-vapor gas constant

= 4.61 x10–4 kPa·K–1·m3·g–1

Ric = 0.25 = critical Richardson number (dimensionless)

so = 343.15 m·s–1 = sound speed in standard, calm air

TSTP = 15°C = standard sea-level temperature

ε = 0.622 gwater·gair–1 = ℜd / ℜv = gas-constant ratio

γ = 0.0004 (gwater·gair–1)·K–1 = Cp / Lv

= 0.4 (gwater·kgair–1)·K–1 = psychrometric constant

Γd = 9.75 K·km–1 = |g|/Cp = dry adiabatic lapse rate

ρSTP = 1.225 kg·m–3 = standard sea-level air density

ρavg = 0.689 kg·m–3 = air density averaged over the troposphere (over z = 0 to 11 km)

ρliq = 999.84 kg·m–3 = density of liquid water at 0°C

= 1000.0 kg·m–3 = density of liquid water at 4°C

= 998.21 kg·m–3 = density of liquid water at 20°C

= 992.22 kg·m–3 = density of liquid water at 40°C

= 983.20 kg·m–3 = density of liquid water at 60°C

= 971.82 kg·m–3 = density of liquid water at 80°C

= 958.40 kg·m–3 = density of liquid water at 100°C

ρsea-water = 1025 kg·m–3 = avg. density of sea water (sea water contains 34.482 g of salt ions per kg of water, on average)

ρice = 916.8 kg·m–3 = density of ice at 0°C

σ = 0.076 N·m–1 = surface tension of pure water at 0°C

# B.5. Conversion Factors & Combined Parameters

Cpd / Cvd = k = 1.400 (dimensionless) = specific heat ratio

Cpd /|g| = 102.52 m·K–1

Cpd / Lv = 0.0004 (gwater·gair–1)·K–1 = γ

= 0.4 (gwater·kgair–1)·K–1

= psychrometric constant

Cpd / ℜd = 3.50 (dimensionless)

Cvd / Cpd = 1/k = 0.714 (dimensionless)

|g|/Cpd = Γd = 9.8 K·km–1 = dry adiabatic lapse rate

|g|/ ℜd = 0.0342 K·m–1 = 1/(hypsometric constant)

Lv / Cpd = 2.5 K/(gwater·kgair–1)

Lv / ℜv = 5423 K = Clausius-Clapeyron parameter for vaporization

d / Cpd = 0.28571 (dimensionless) = potential-temperature constant

d /|g| = 29.29 m·K–1 = hypsometric constant

ρair ·Cpd air = 1231 (W·m–2) / (K·m·s–1) at sea level

= 12.31 mb·K–1 at sea level

= 1.231 kPa·K–1 at sea level

ρair ·|g| = 12.0 kg·m–2·s–2 at sea level

= 0.12 mb·m–1 at sea level

= 0.012 kPa·m–1 at sea level

ρair ·Lv = 3013.5 (W·m–2) / [(gwater·kgair–1)·(m·s–1)] at sea level

ρliq ·Cliq = 4.295 x106 (W·m–2) / (K·m·s–1)

1 megaton nuclear explosion ≈ 4x1015 J

2π radians = 360°

(1–ε)/ε = 0.61 = virtual temperature constant