Skip to main content
Geosciences LibreTexts

12.1.10: Interactions of X-Rays and Atoms

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Figure 12.8: X-ray scattering

    When an X-ray strikes an atom, the wavelike character of the X-ray causes electrons, protons, and neutrons to vibrate. Heavy protons and neutrons vibrate less than much lighter electrons. The oscillating electrons reemit radiation, called secondary radiation, at almost the same frequencies and wavelengths as the incoming beam. This creates X-ray wavefronts (dashed lines in Figure 12.8) that travel in all directions from the atom, much the same way that circular ripples disperse in water (Figure 12.8b). The difference in radius of adjacent wavefronts is the wavelength, λ. This process, called scattering, is not the same for all elements, nor is it the same in all directions.

    Because heavy elements have atoms with more electrons, they scatter more efficiently than light elements, and scattering by heavy elements can completely mask scattering by light ones. As a result, X-ray crystallographers often have trouble measuring the effects of light atoms, such as hydrogen, when X-rays interact with crystal structures. As X-rays scatter in different directions, they interact with electron clouds in various ways. Overall, those scattered at high angles to the incident beam are less intense than those scattered at low angles.

    Besides being scattered, when X-rays interact with atoms in a crystal, some electrons temporarily bump up to higher energy states. As the electrons return to their normal state, a release of radiation characteristic of the element comprising the target atom (in the crystal) occurs. This process, called X-ray fluorescence (XRF), is similar to the interaction of electrons and atoms in the target metal of an X-ray tube, but results from interaction of X-rays and atoms in the crystal. X-ray fluorescence, while not widely used by mineralogists, is the basis for a common analytical method used by petrologists and geochemists.

    This page titled 12.1.10: Interactions of X-Rays and Atoms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Dexter Perkins via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?