Skip to main content
Geosciences LibreTexts

11: Water

  • Page ID
    32383
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives
    • Describe the processes of the water cycle.
    • Describe drainage basins, watershed protection, and water budget.
    • Describe reasons for water laws, who controls them, and how water is shared in the western U.S.
    • Describe zone of transport, zone of sediment production, zone of deposition, and equilibrium.
    • Describe stream landforms: channel types, alluvial fans, floodplains, natural levees, deltas, entrenched meanders, and terraces.
    • Describe the properties required for a good aquifer; define confining layer water table.
    • Describe three major groups of water contamination and three types of remediation.
    • Describe karst topography, how it is created, and the landforms that characterize it.
    Entrenched meander of the Colorado River, downstream of Page, Arizona. High cliffs, that lead down to a river with narrow shores.
    Figure \(\PageIndex{1}\): Entrenched meander of the Colorado River, downstream of Page, Arizona.

    All life on Earth requires water. The hydrosphere (Earth’s water) is an important agent of geologic change. Water shapes our planet through weathering and erosion, deposits minerals that aid in lithification, and alters rocks after they are lithified. Water carried by subducted oceanic plates causes flux melting in the upper mantle material. Water is among the volatiles in magma and emerges at the surface as steam in volcanoes.

    Tall ancient pillars with arched entrances supporting a canal that piped water from the mountains to Roman cities.
    Figure \(\PageIndex{2}\): Example of a Roman aqueduct in Segovia, Spain.

    Humans rely on suitable water sources for consumption, power generation, agriculture, and many other puposes. In pre-industrial civilizations, control of water resources was a symbol of power [1; 2]. Two thousand-year-old Roman aqueducts still grace European, Middle Eastern, and North African skylines. Ancient Mayan architecture depicts water imagery such as frogs, water lilies, and waterfowl to illustrate the importance of water in their societies [3]. In the drier lowlands of the Yucatan Peninsula, mask facades of the hooked-nosed rain god, Chac (or Chaac) are prominent on Mayan buildings such as the Kodz Poop (Temple of the Masks, sometimes spelled Coodz Poop) at the ceremonial site of Kabah. To this day, government control over water continues to be an integral part of most modern societies.

    Mayan stone figure with a long elephant-like nose representing a water deity.
    Figure \(\PageIndex{3}\): Chac mask in Mexico.

    • 11.1: Water Cycle
      The water cycle describes how water changes between solid, liquid, and gas (water vapor) phases and changes location. Water can be evaporated, which is the process where a liquid is converted to a gas. Solar energy warms the water sufficiently to excite the water molecules to the point of vaporization. Evaporation occurs from surface water bodies such as oceans, lakes, and streams and the land surface.
    • 11.2: Water Basin and Budgets
      The basic unit of division of the landscape is the drainage basin. A drainage basin, also known as a catchment or watershed, is the area of land that captures precipitation and contributes runoff to a stream or stream segment. Drainage divides are local topographic high points that separate one drainage basin from another. If water falls on one side of the divide, that water goes to one stream, and if it falls on the other side of the divide, then the water goes to a different stream.
    • 11.3: Water Use and Distribution
      In the United States, 355 billion gallons of ground and surface water are withdrawn for use each day, of which 76 billion gallons are fresh groundwater. The state of California accounts for 16% of national groundwater withdrawals. Utah is the second driest state in the United States behind its neighbor Nevada, having a mean statewide precipitation of 12.2 inches per year. Utah also has the second-highest per capita rate of total domestic water use of 167 gallons per day per person.
    • 11.4: Water Law
      Federal and state governments have put laws in place to ensure the fair and equitable use of water. Based on the distribution of precipitation in the United States, the states are in a position that requires them to create a fair and legal system for sharing water. Because of the limited supply of water, especially in the western United States, some states have adopted a system of legally dispersing ownership of natural waters. A claim to a portion of a water source is known as a water right.
    • 11.5: Surface Water
      A stream or river is a body of flowing surface water confined to a channel. Terms such as creeks and brooks are social terms not used in geology. Streams are the most important agents of erosion and transportation of sediments on the earth’s surface. They create much of the surface topography and are an important water resource. Most of this section will focus on stream location, processes, landforms, and hazards. Water resources and groundwater processes will be discussed in later sections.
    • 11.6: Groundwater
      Most rocks are not entirely solid and contain a certain amount of open space between grains or crystals, known as pores. Porosity is a measure of the open space in rocks –expressed as the percentage of open space that makes up the total volume of the rock or sediment material. Porosity can occur as primary porosity, which represents the original pore spaces in the rock (e.g. space between sand grains), or secondary porosity which occurs after the rock forms (e.g. dissolved portions of rock).
    • 11.7: Water Contamination
      Water can be contaminated by various human activities or by existing natural features, like mineral-rich geologic formations.  Agricultural activities, industrial operations, landfills, animal operations, and small and large scale sewage treatment processes, among many other things, all can potentially contribute to contamination. As water runs over the land or infiltrates into the ground, it dissolves material left behind by these potential contaminant sources.
    • 11.8: Karst
      Karst refers to landscapes and hydrologic features created by the dissolution of limestone. Karst can be found anywhere where there are limestone and other soluble subterranean substances like salt deposits. The dissolution of limestone creates features like sinkholes, caverns, disappearing streams, and towers. Karst forms when natural water, in combination with carbon dioxide, creates carbonic acid and dissolves calcite (calcium carbonate) in limestone.
    • 11.S: Summary

    Thumbnail: Violent water below Niagara Falls. (CC-BY; The Rafti Institute).


    This page titled 11: Water is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Chris Johnson, Matthew D. Affolter, Paul Inkenbrandt, & Cam Mosher (OpenGeology) via source content that was edited to the style and standards of the LibreTexts platform.