16: The Atmosphere
- Page ID
- 32265
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)At the end of this chapter, students should be able to:
- Understand the significance of the atmosphere.
- Describe the composition of the atmospheric gases.
- Explain the major layers of the atmosphere and their importance.
- Understand the different types of electromagnetic waves.
- Analyze the relationships between energy, temperature, and heat.
- Describe how heat is transferred around the planet.
- Explain how greenhouse gases cause the greenhouse effect.
- Describe how solar radiation and Earth's movements affect seasons and cause day and night.
- Explain the relationship between atmospheric pressure and wind.
- Describe different types of wind and how they are generated.
- Understand the global atmospheric circulation patterns.
The Earth's atmosphere is critical to the processes that govern weather and climate, and is especially important to sustaining life. The atmosphere protects the planet from harmful ultraviolet radiation through the ozone layer. The notable layers of the atmosphere include the troposphere, where weather phenomena occur, and the stratosphere, which houses the ozone layer. Solar energy influences atmospheric temperatures and drives processes such as conduction, convection, and radiation, which are essential for heat transfer within the atmosphere.
The Earth's relationship with the Sun, including the planet's tilt, rotation, and orbit determine seasonal changes and influence global weather patterns. Wind is generated due to pressure differences and forms global circulation patterns like the Hadley, Ferrel, and Polar cells. These circulations play a vital role in distributing heat and moisture across the Earth. Atmospheric processes have a profound impact on the global environment.
Author: OpenAI, edited by N. Ikeda. Located at: https://chatgpt.com/. Accessed on: August 27, 2024.
- 16.1: Significance and Composition of the Atmosphere
- Earth’s atmosphere is a thin blanket of gases and tiny particles called air. We are most aware of air when it moves and creates wind. All living things need some of the gases in air for life support. Without an atmosphere, Earth would likely be just another lifeless rock. Earth’s atmosphere, along with the abundant liquid water at Earth’s surface, are the keys to our planet’s unique place in the solar system. Much of what makes Earth exceptional depends on the atmosphere.
- 16.2: Layers of the Atmosphere
- The atmosphere is layered, corresponding with how the atmosphere’s temperature changes with altitude. By understanding the way temperature changes with altitude, we can learn a lot about how the atmosphere works. While weather takes place in the lower atmosphere, interesting things, such as the beautiful aurora, happen higher in the atmosphere.
- 16.3: Atmospheric Energy, Temperature, and Heat
- Energy travels through space or material. Invisible energy waves can travel through air, glass, and even the vacuum of outer space. These waves have electrical and magnetic properties, so they are called electromagnetic waves. The transfer of energy from one object to another through electromagnetic waves is known as radiation. Different wavelengths of energy create different types of electromagnetic waves.
- 16.4: Heat Transfer in the Atmosphere
- Heat moves in the atmosphere the same way it moves through the solid Earth or another medium. What follows is a review of the way heat flows and is transferred, but applied to the atmosphere. Radiation is the transfer of energy between two objects by electromagnetic waves. Solar radiation heats the ground, then heat radiates from the ground into the lower atmosphere.
- 16.5: Earth-Sun Relationships
- The Earth rotates once on its axis about every 24 hours. As the Earth rotates, observers on Earth see the Sun moving across the sky from east to west with the beginning of each new day. We often say that the Sun is “rising” or “setting,” but it is the Earth’s rotation that gives us the perception of the Sun rising or setting over the horizon. As Earth turns, the Moon and stars also change position in our sky.
- 16.6: Atmospheric Movements and Flow
- Warm air rising creates a low pressure zone at the ground. Air from the surrounding area is sucked into the space left by the rising air. Air flows horizontally at the top of the troposphere; horizontal flow is called advection. The air cools until it descends. Where it reaches the ground, it creates a high pressure zone. Air flowing from areas of high pressure to low pressure creates winds. Warm air can hold more moisture than cold air.
- 16.7: Global Atmospheric Circulations
- Because more solar energy hits the equator, the air warms and forms a low pressure zone. At the top of the troposphere, half moves toward the North Pole and half toward the South Pole. As it moves along the top of the troposphere it cools. The cool air is dense and when it reaches a high pressure zone it sinks to the ground. The air is sucked back toward the low pressure at the equator. This describes the convection cells north and south of the equator.
Thumbnail: Stunning Dawn Sky Over Serene Lake. (CC0, public domain)