10: Geostrophic Currents
- Page ID
- 30112
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Within the ocean’s interior away from the top and bottom Ekman layers, for horizontal distances exceeding a few tens of kilometers, and for times exceeding a few days, horizontal pressure gradients in the ocean almost exactly balance the Coriolis force resulting from horizontal currents. This balance is known as the geostrophic balance.
The dominant forces acting in the vertical are the vertical pressure gradient and the weight of the water. The two balance within a few parts per million. Thus pressure at any point in the water column is due almost entirely to the weight of the water in the column above the point. The dominant forces in the horizontal are the pressure gradient and the Coriolis force. They balance within a few parts per thousand over large distances and times (See Box below).
Both balances require that viscosity and nonlinear terms in the equations of motion be negligible. Is this reasonable? Consider viscosity. We know that a rowboat weighing a hundred kilograms will coast for maybe ten meters after the rower stops. A super tanker moving at the speed of a rowboat may coast for kilometers. It seems reasonable, therefore, that a cubic kilometer of water weighing \(10^{15}\) kg would coast for perhaps a day before slowing to a stop. And oceanic mesoscale eddies contain perhaps 1000 cubic kilometers of water. Hence, our intuition may lead us to conclude that neglect of viscosity is reasonable. Of course, intuition can be wrong, and we need to refer back to scaling arguments.
We wish to simplify the equations of motion to obtain solutions that describe the deep-sea conditions well away from coasts and below the Ekman boundary layer at the surface. To begin, let’s examine the typical size of each term in the equations in the expectation that some will be so small that they can be dropped without changing the dominant characteristics of the solutions. For interior, deep-sea conditions, typical values for distance \(L\), horizontal velocity \(U\), depth \(H\), Coriolis parameter \(f\), gravity \(g\), and density \(\rho\) are:
\[\begin{array}{l} &L \approx 10^{6} \ \text{m} \quad\quad\quad &H_{1} \approx 10^{3} \ \text{m} \quad\quad\quad &f \approx 10^{-4} \ \text{s}^{-1} \quad\quad\quad &\rho \approx 10^{3} \ \text{kg/m}^{3} \nonumber \\ &U \approx 10^{-1} \ \text{m/s} &H_{2} \approx 1 \ \text{m} &\rho \approx 10^{3} \ \text{kg/m}^{3} &g \approx 10 \ \text{m/s}^{2} \end{array} \nonumber \]
where \(H_{1}\) and \(H_{2}\) are typical depths for pressure in the vertical and horizontal. From these variables we can calculate typical values for vertical velocity \(W\), pressure \(P\), and time \(T\):
\[\begin{align*} \frac{\partial W}{\partial z} &= - \left(\frac{\partial U}{\partial x} + \frac{\partial v}{\partial y}\right) \\ \frac{W}{H_{1}} &= \frac{U}{L}; \quad W = \frac{U H_{1}}{L} = \frac{10^{-1} \cdot 10^{3}}{10^{6}} \text{m/s} = 10^{-4} \ \text{m/s} \\ P &= \rho g H_{1} = 10^{3} \cdot 10^{1} \cdot 10^{3} = 10^{7} \ \text{Pa}; \quad \partial p/\partial x = \rho g H_{2}/L = 10^{-2} \ \text{Pa/m} \\ T &= L/U = 10^{7} \ \text{s} \end{align*} \]
The momentum equation for vertical velocity is therefore:
\[\begin{align*} \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} &= -\frac{1}{\rho} \frac{\partial \rho}{\partial z} + 2 \Omega \ u \cos \varphi - g \\ \frac{W}{T} + \frac{UW}{L} + \frac{UW}{L} + \frac{W^{2}}{H} &= \frac{P}{\rho H_{1}} + fU - g \\ 10^{-11} + 10^{-11} + 10^{-11} + 10^{-11} &= 10 + 10^{-5} + 10 \end{align*} \]
and the only important balance in the vertical is hydrostatic: \[\frac{\partial p}{\partial z} = -\rho g \quad \text{Correct to } 1:10^{6} \nonumber \]
The momentum equation for horizontal velocity in the \(x\) direction is \[\begin{align*} \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + u \frac{\partial u}{\partial y} + u \frac{\partial u}{\partial z} &= -\frac{1}{\rho} \frac{\partial p}{\partial x} + fv \\ 10^{-8} + 10^{-8} + 10^{-8} + 10^{-8} &= 10^{-5} + 10^{-5} \end{align*} \]
Thus the Coriolis force balances the pressure gradient within one part per thousand. This is called the geostrophic balance, and the geostrophic equations are: \[\frac{1}{\rho} \frac{\partial p}{\partial x} = fv; \quad \frac{1}{\rho} \frac{\partial p}{\partial y} = -fu; \quad \frac{1}{\rho} \frac{\partial p}{\partial z} = -g \nonumber \]
This balance applies to oceanic flows with horizontal dimensions larger than roughly 50 km and times greater than a few days.
- 10.1: Hydrostatic Equilibrium
- The simplest solution of the momentum equation, for hydrostatic equilibrium of an ocean at rest. Introduction to geostrophic equations.
- 10.2: Geostrophic Equations
- Further simplification of the geostrophic equations.
- 10.3: Surface Geostrophic Currents from Altimetry
- Measuring surface current velocity through ocean surface topography relative to the geoid; discussion of how this is enabled by satellite altimetry.
- 10.4: Geostrophic Currents from Hydrography
- Geostrophic surfaces within the ocean, and their application in calculating geostrophic currents.
- 10.5: An Example Using Hydrographic Data
- A worked example of numerical calculations of geostrophic current velocity, using hydrographic data collected via CTD.
- 10.6: Comments on Geostrophic Currents
- Techniques for converting relative geostrophic velocities to absolute velocities relative to the Earth. Discussion of the disadvantages of calculating currents from hydrographic data and limitations of the geostrophic equations.
- 10.7: Currents from Hydrographic Sections
- Technique for estimating barometric currents in ocean cross-sections, using hydrographic data.
- 10.8: Lagrangian Measurements of Currents
- Lagrangian techniques for measuring currents, via tracking the position of a drifter that follows a water parcel either on the surface or deeper within the water column. Different drifter types and the use of chemical tracers for measuring flow in the deep ocean.
- 10.9: Eularian Measurements
- Methods of making Eularian current measurements, tracking the velocity of water at a fixed position, using ships and moorings.
- 10.10: Important Concepts
- Summary of major concepts introduced in this chapter.