10.5: An Example Using Hydrographic Data
- Page ID
- 30120
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Let’s now consider a specific numerical calculation of geostrophic velocity using generally accepted procedures from Processing of Oceanographic Station Data (JPOTS Editorial Panel, 1991). The book has worked examples using hydrographic data collected by the R/V Endeavor in the north Atlantic. Data were collected on Cruise 88 along 71\(^{\circ}\)W across the Gulf Stream south of Cape Cod, Massachusetts at stations 61 and 64. Station 61 is on the Sargasso Sea side of the Gulf Stream in water 4260 m deep. Station 64 is north of the Gulf Stream in water 3892 m deep. The measurements were made by a Conductivity-Temperature-Depth-Oxygen Profiler, Mark III CTD/02, made by Neil Brown Instruments Systems.
The CTD sampled temperature, salinity, and pressure 22 times per second, and the digital data were averaged over 2-decibar intervals as the CTD was lowered in the water. Data were tabulated at 2-decibar pressure intervals centered on odd values of pressure because the first observation is at the surface and the first averaging interval extends to 2 dbar, so the center of the first interval is at 1 dbar. Data were further smoothed with a binomial filter and linearly interpolated to standard levels reported in the first three columns of tables \(\PageIndex{1}\) and \(\PageIndex{2}\). All processing was done by computer
\(\delta(S, t, p)\) in the fifth column of tables \(\PageIndex{1}\) and \(\PageIndex{2}\) is calculated from the values of \(t, S, p\) in the layer. \(< \delta >\) is the average value of specific volume anomaly for the layer between standard pressure levels. It is the average of the values of \(\delta(S, t, p)\) at the top and bottom of the layer (cf. the mean-value theorem of calculus). The last column \((10^{-5} \Delta \Phi)\) is the product of the average specific volume anomaly of the layer times the thickness of the layer in decibars. Therefore, the last column is the geopotential anomaly \(\Delta \Phi\) calculated by integrating \((10.4.8)\) between \(P_{1}\) at the bottom of each layer and \(P_{2}\) at the top of each layer.
The distance between the stations is \(L = 110,935 \ \text{m}\); the average Coriolis parameter is \(f = 0.88104 \times 10^{-4}\); and the denominator in \((10.4.9)\) is \(0.10231 \ \text{s/m}\). This was used to calculate the geostrophic currents relative to 2000 decibars reported in table \(\PageIndex{3}\) and plotted in figure \(\PageIndex{1}\).
Notice that there are no Ekman currents in figure \(\PageIndex{1}\). Ekman currents are not geostrophic, so they don’t contribute directly to the topography. They contribute only indirectly through Ekman pumping (see figure \(12.4.2\)).

Pressure (decibar) | \(t \ (^{\circ} \text{C})\) | \(S\) | \(\sigma (\theta) \) \((\text{kg/m}^{3})\) |
\(\delta (S,t,p)\) \((10^{-8} \text{m}^{3}/\text{kg})\) |
\(<\delta>\) \((10^{-8} \text{m}^{3}/\text{kg})\) |
\(10^{5} \Delta \Phi\) \(( \text{m}^{2}/\text{s}^{2})\) |
---|---|---|---|---|---|---|
0 | 25.698 | 35.221 | 23.296 | 457.24 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">457.26 | 0.046 | |||||
1 | 25.698 | 35.221 | 23.296 | 457.28 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">440.22 | 0.396 | |||||
10 | 26.763 | 36.106 | 23.658 | 423.15 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">423.41 | 0.423 | |||||
20 | 26.678 | 36.106 | 23.658 | 423.66 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">423.82 | 0.424 | |||||
30 | 26.676 | 36.107 | 23.659 | 423.98 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">376.23 | 0.752 | |||||
50 | 24.528 | 36.561 | 24.670 | 328.48 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">302.07 | 0.755 | |||||
75 | 22.753 | 36.614 | 25.236 | 275.66 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">257.41 | 0.644 | |||||
100 | 21.427 | 36.637 | 25.630 | 239.15 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">229.61 | 0.574 | |||||
125 | 20.633 | 36.627 | 25.841 | 220.06 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">208.84 | 0.522 | |||||
150 | 19.522 | 36.558 | 26.086 | 197.62 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">189.65 | 0.948 | |||||
200 | 18.798 | 36.555 | 26.273 | 181.67 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">178.72 | 0.894 | |||||
250 | 18.431 | 36.537 | 26.354 | 175.77 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">174.12 | 0.871 | |||||
300 | 18.189 | 36.526 | 26.408 | 172.46 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">170.38 | 1.704 | |||||
400 | 17.726 | 36.477 | 26.489 | 168.30 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">166.76 | 1.668 | |||||
500 | 17.165 | 36.381 | 26.557 | 165.22 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">158.78 | 1.588 | |||||
600 | 15.952 | 36.105 | 26.714 | 152.33 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">143.18 | 1.432 | |||||
700 | 13.458 | 35.776 | 26.914 | 134.03 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">124.20 | 1.242 | |||||
800 | 11.109 | 35.437 | 27.115 | 114.36 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">104.48 | 1.045 | |||||
900 | 8.798 | 35.178 | 27.306 | 94.60 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">80.84 | 0.808 | |||||
1000 | 6.292 | 35.044 | 27.562 | 67.07 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">61.89 | 0.619 | |||||
1100 | 5.249 | 35.004 | 27.660 | 56.70 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">54.64 | 0.546 | |||||
1200 | 4.813 | 34.995 | 27.705 | 52.58 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">51.74 | 0.517 | |||||
1300 | 4.554 | 34.986 | 27.727 | 50.90 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">50.40 | 0.504 | |||||
1400 | 4.357 | 34.977 | 27.743 | 49.89 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">49.73 | 0.497 | |||||
1500 | 4.245 | 34.975 | 27.753 | 49.56 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">49.30 | 1.232 | |||||
1750 | 4.028 | 34.973 | 27.777 | 49.03 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">48.83 | 1.221 | |||||
2000 | 3.852 | 34.975 | 27.799 | 48.62 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">47.77 | 2.389 | |||||
2500 | 3.424 | 34.968 | 27.839 | 46.92 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">45.94 | 2.297 | |||||
3000 | 2.963 | 34.946 | 27.868 | 44.96 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.40 | 2.170 | |||||
3500 | 2.462 | 34.920 | 27.894 | 41.84 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">41.93 | 2.097 | |||||
4000 | 2.259 | 34.904 | 27.901 | 42.02 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> |
Pressure (decibar) | \(t \ (^{\circ} \text{C})\) | \(S\) | \(\sigma (\theta) \) \((\text{kg/m}^{3})\) |
\(\delta (S,t,p) \) \((10^{-8} \text{m}^{3}/\text{kg})\) |
\(<\delta>\) \((10^{-8} \text{m}^{3}/\text{kg})\) |
\(10^{5} \Delta \Phi\) \(( \text{m}^{2}/\text{s}^{2})\) |
---|---|---|---|---|---|---|
0 | 26.148 | 34.646 | 22.722 | 512.09 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">512.15 | 0.051 | |||||
1 | 26.148 | 34.646 | 22.722 | 512.09 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">512.61 | 0.461 | |||||
10 | 26.163 | 34.645 | 22.717 | 513.01 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">512.89 | 0.513 | |||||
20 | 26.167 | 34.655 | 22.724 | 512.76 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">466.29 | 0.466 | |||||
30 | 25.640 | 35.733 | 23.703 | 419.82 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">322.38 | 0.645 | |||||
50 | 18.967 | 35.944 | 25.755 | 224.93 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">185.56 | 0.464 | |||||
75 | 15.371 | 35.904 | 26.590 | 146.19 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">136.18 | 0.340 | |||||
100 | 14.356 | 35.897 | 26.809 | 126.16 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">120.91 | 0.302 | |||||
125 | 13.059 | 35.696 | 26.925 | 115.66 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">111.93 | 0.280 | |||||
150 | 12.134 | 35.567 | 27.008 | 108.20 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">100.19 | 0.501 | |||||
200 | 10.307 | 35.360 | 27.185 | 92.17 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">87.41 | 0.437 | |||||
250 | 8.783 | 35.168 | 27.290 | 82.64 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">79.40 | 0.397 | |||||
300 | 8.046 | 35.117 | 27.364 | 76.16 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">66.68 | 0.667 | |||||
400 | 6.235 | 35.052 | 27.568 | 57.19 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">52.71 | 0.527 | |||||
500 | 5.230 | 35.018 | 27.667 | 48.23 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">46.76 | 0.468 | |||||
600 | 5.005 | 35.044 | 27.710 | 45.29 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">44.67 | 0.447 | |||||
700 | 4.756 | 35.027 | 27.731 | 44.04 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.69 | 0.437 | |||||
800 | 4.399 | 34.992 | 27.744 | 43.33 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.22 | 0.432 | |||||
900 | 4.291 | 34.991 | 27.756 | 43.11 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.12 | 0.431 | |||||
1000 | 4.179 | 34.986 | 27.764 | 43.12 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.10 | 0.431 | |||||
1100 | 4.077 | 34.982 | 27.773 | 43.07 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.12 | 0.431 | |||||
1200 | 3.969 | 34.975 | 27.779 | 43.17 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.28 | 0.433 | |||||
1300 | 3.909 | 34.974 | 27.786 | 43.39 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.38 | 0.434 | |||||
1400 | 3.831 | 34.973 | 27.793 | 43.36 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.31 | 0.433 | |||||
1500 | 3.767 | 34.975 | 27.802 | 43.26 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.20 | 1.080 | |||||
1750 | 3.600 | 34.975 | 27.821 | 43.13 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.00 | 1.075 | |||||
2000 | 3.401 | 34.968 | 27.837 | 42.86 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">42.13 | 2.106 | |||||
2500 | 2.942 | 34.948 | 27.867 | 41.39 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">40.33 | 2.016 | |||||
3000 | 2.475 | 34.923 | 27.891 | 39.26 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">39.22 | 1.961 | |||||
3500 | 2.219 | 34.904 | 27.900 | 39.17 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> | |
\)\((10^{-8} \text{m}^{3}/\text{kg})\)">40.08 | 2.004 | |||||
4000 | 2.177 | 34.896 | 27.901 | 40.98 | \)\((10^{-8} \text{m}^{3}/\text{kg})\)"> |
Pressure (decibar) |
\(10^{-5} \Phi_{61}\) \(\text{m}^{2}/\text{s}^{2}\) |
\(\sum \Delta \Phi\) \(\text{at } 61^{*}\) |
\(10^{-5} \Phi_{64}\) \(\text{m}^{2}/\text{s}^{2}\) |
\(\sum \Delta \Phi\) \(\text{at } 64^{*}\) |
\(V\) \((\text{m/s})\) |
---|---|---|---|---|---|
0 | 2.1872 | 1.2583 | 0.95 | ||
0.046 | 0.051 | ||||
1 | 2.1826 | 1.2532 | 0.95 | ||
0.396 | 0.461 | ||||
10 | 2.1430 | 1.2070 | 0.96 | ||
0.423 | 0.513 | ||||
20 | 2.1006 | 1.1557 | 0.97 | ||
0.424 | 0.466 | ||||
30 | 2.0583 | 1.1091 | 0.97 | ||
0.752 | 0.645 | ||||
50 | 1.9830 | 1.0446 | 0.96 | ||
0.755 | 0.464 | ||||
75 | 1.9075 | 0.9982 | 0.93 | ||
0.644 | 0.340 | ||||
100 | 1.8431 | 0.9642 | 0.90 | ||
0.574 | 0.302 | ||||
125 | 1.7857 | 0.9340 | 0.87 | ||
0.522 | 0.280 | ||||
150 | 1.7335 | 0.9060 | 0.85 | ||
0.948 | 0.501 | ||||
200 | 1.6387 | 0.8559 | 0.80 | ||
0.894 | 0.437 | ||||
250 | 1.5493 | 0.8122 | 0.75 | ||
0.871 | 0.397 | ||||
300 | 1.4623 | 0.7725 | 0.71 | ||
1.704 | 0.667 | ||||
400 | 1.2919 | 0.7058 | 0.60 | ||
1.668 | 0.527 | ||||
500 | 1.1252 | 0.6531 | 0.48 | ||
1.588 | 0.468 | ||||
600 | 0.9664 | 0.6063 | 0.37 | ||
1.432 | 0.447 | ||||
700 | 0.8232 | 0.5617 | 0.27 | ||
1.242 | 0.437 | ||||
800 | 0.6990 | 0.5180 | 0.19 | ||
1.045 | 0.432 | ||||
900 | 0.5945 | 0.4748 | 0.12 | ||
0.808 | 0.431 | ||||
1000 | 0.5137 | 0.4317 | 0.08 | ||
0.619 | 0.431 | ||||
1100 | 0.4518 | 0.3886 | 0.06 | ||
0.546 | 0.431 | ||||
1200 | 0.3972 | 0.3454 | 0.05 | ||
0.517 | 0.433 | ||||
1300 | 0.3454 | 0.3022 | 0.04 | ||
0.504 | 0.434 | ||||
1400 | 0.2950 | 0.2588 | 0.04 | ||
0.497 | 0.433 | ||||
1500 | 0.2453 | 0.2155 | 0.03 | ||
1.232 | 1.080 | ||||
1750 | 0.1221 | 0.1075 | 0.01 | ||
1.221 | 1.075 | ||||
2000 | 0.0000 | 0.0000 | 0.00 | ||
2.389 | 2.106 | ||||
2500 | -0.2389 | -0.2106 | -0.03 | ||
2.297 | 2.016 | ||||
3000 | -0.4686 | -0.4123 | -0.06 | ||
2.170 | 1.961 | ||||
3500 | -0.6856 | -0.6083 | -0.08 | ||
2.097 | 2.004 | ||||
4000 | -0.8952 | -0.8087 | -0.09 | ||
\(^{*}\) Geopotential anomaly integrated from 2000 dbar level. Velocity is calculated from \((10.4.9)\) |