Skip to main content
Geosciences LibreTexts

10.5: An Example Using Hydrographic Data

  • Page ID
    30120
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Let’s now consider a specific numerical calculation of geostrophic velocity using generally accepted procedures from Processing of Oceanographic Station Data (JPOTS Editorial Panel, 1991). The book has worked examples using hydrographic data collected by the R/V Endeavor in the north Atlantic. Data were collected on Cruise 88 along 71\(^{\circ}\)W across the Gulf Stream south of Cape Cod, Massachusetts at stations 61 and 64. Station 61 is on the Sargasso Sea side of the Gulf Stream in water 4260 m deep. Station 64 is north of the Gulf Stream in water 3892 m deep. The measurements were made by a Conductivity-Temperature-Depth-Oxygen Profiler, Mark III CTD/02, made by Neil Brown Instruments Systems.

    The CTD sampled temperature, salinity, and pressure 22 times per second, and the digital data were averaged over 2-decibar intervals as the CTD was lowered in the water. Data were tabulated at 2-decibar pressure intervals centered on odd values of pressure because the first observation is at the surface and the first averaging interval extends to 2 dbar, so the center of the first interval is at 1 dbar. Data were further smoothed with a binomial filter and linearly interpolated to standard levels reported in the first three columns of tables \(\PageIndex{1}\) and \(\PageIndex{2}\). All processing was done by computer

    \(\delta(S, t, p)\) in the fifth column of tables \(\PageIndex{1}\) and \(\PageIndex{2}\) is calculated from the values of \(t, S, p\) in the layer. \(< \delta >\) is the average value of specific volume anomaly for the layer between standard pressure levels. It is the average of the values of \(\delta(S, t, p)\) at the top and bottom of the layer (cf. the mean-value theorem of calculus). The last column \((10^{-5} \Delta \Phi)\) is the product of the average specific volume anomaly of the layer times the thickness of the layer in decibars. Therefore, the last column is the geopotential anomaly \(\Delta \Phi\) calculated by integrating \((10.4.8)\) between \(P_{1}\) at the bottom of each layer and \(P_{2}\) at the top of each layer.

    The distance between the stations is \(L = 110,935 \ \text{m}\); the average Coriolis parameter is \(f = 0.88104 \times 10^{-4}\); and the denominator in \((10.4.9)\) is \(0.10231 \ \text{s/m}\). This was used to calculate the geostrophic currents relative to 2000 decibars reported in table \(\PageIndex{3}\) and plotted in figure \(\PageIndex{1}\).

    Notice that there are no Ekman currents in figure \(\PageIndex{1}\). Ekman currents are not geostrophic, so they don’t contribute directly to the topography. They contribute only indirectly through Ekman pumping (see figure \(12.4.2\)).

    Graph on left shows relative current vs. depth, calculated from hydrographic data collected by the Endeavor cruise south of Cape Cod in August 1982. Graph on right shows cross section of potential density across the Gulf Stream.
    Figure \(\PageIndex{1}\): Left: Relative current as a function of depth calculated from hydrographic data collected by the Endeavor cruise south of Cape Cod in August 1982. The Gulf Stream is the fast current shallower than 1000 decibars. The assumed depth of no motion is at 2000 decibars. Right: Cross section of potential density \(\sigma_{\theta}\) across the Gulf Stream along 63.66\(^{\circ}\)W calculated from CTD data collected from Endeavor on 25–28 April 1986. The Gulf Stream is centered on the steeply sloping contours shallower than 1000m between 40\(^{\circ}\) and 41\(^{\circ}\). Notice that the vertical scale is 425 times the horizontal scale. (Data contoured by Lynn Talley, Scripps Institution of Oceanography).
    Table \(\PageIndex{1}\). Computation of Relative Geostrophic Currents.
    Data from Endeavor Cruise 88, Station 61 (3640.03’N, 7059.59’W; 23 August 1982; 1102Z)
    Pressure (decibar) \(t \ (^{\circ} \text{C})\) \(S\) \(\sigma (\theta) \)
    \((\text{kg/m}^{3})\)
    \(\delta (S,t,p)\)
    \((10^{-8} \text{m}^{3}/\text{kg})\)
    \(<\delta>\)
    \((10^{-8} \text{m}^{3}/\text{kg})\)
    \(10^{5} \Delta \Phi\)
    \(( \text{m}^{2}/\text{s}^{2})\)
    0 25.698 35.221 23.296 457.24 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">457.26 0.046
    1 25.698 35.221 23.296 457.28 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">440.22 0.396
    10 26.763 36.106 23.658 423.15 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">423.41 0.423
    20 26.678 36.106 23.658 423.66 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">423.82 0.424
    30 26.676 36.107 23.659 423.98 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">376.23 0.752
    50 24.528 36.561 24.670 328.48 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">302.07 0.755
    75 22.753 36.614 25.236 275.66 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">257.41 0.644
    100 21.427 36.637 25.630 239.15 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">229.61 0.574
    125 20.633 36.627 25.841 220.06 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">208.84 0.522
    150 19.522 36.558 26.086 197.62 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">189.65 0.948
    200 18.798 36.555 26.273 181.67 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">178.72 0.894
    250 18.431 36.537 26.354 175.77 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">174.12 0.871
    300 18.189 36.526 26.408 172.46 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">170.38 1.704
    400 17.726 36.477 26.489 168.30 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">166.76 1.668
    500 17.165 36.381 26.557 165.22 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">158.78 1.588
    600 15.952 36.105 26.714 152.33 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">143.18 1.432
    700 13.458 35.776 26.914 134.03 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">124.20 1.242
    800 11.109 35.437 27.115 114.36 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">104.48 1.045
    900 8.798 35.178 27.306 94.60 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">80.84 0.808
    1000 6.292 35.044 27.562 67.07 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">61.89 0.619
    1100 5.249 35.004 27.660 56.70 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">54.64 0.546
    1200 4.813 34.995 27.705 52.58 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">51.74 0.517
    1300 4.554 34.986 27.727 50.90 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">50.40 0.504
    1400 4.357 34.977 27.743 49.89 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">49.73 0.497
    1500 4.245 34.975 27.753 49.56 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">49.30 1.232
    1750 4.028 34.973 27.777 49.03 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">48.83 1.221
    2000 3.852 34.975 27.799 48.62 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">47.77 2.389
    2500 3.424 34.968 27.839 46.92 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">45.94 2.297
    3000 2.963 34.946 27.868 44.96 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.40 2.170
    3500 2.462 34.920 27.894 41.84 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">41.93 2.097
    4000 2.259 34.904 27.901 42.02 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
    Table \(\PageIndex{2}\). Computation of Relative Geostrophic Currents.
    Data from Endeavor Cruise 88, Station 64 (37\(^{\circ}\)39.93’N, 71\(^{\circ}\)0.00’W; 24 August 1982; 0203Z)
    Pressure (decibar) \(t \ (^{\circ} \text{C})\) \(S\) \(\sigma (\theta) \)
    \((\text{kg/m}^{3})\)
    \(\delta (S,t,p) \)
    \((10^{-8} \text{m}^{3}/\text{kg})\)
    \(<\delta>\)
    \((10^{-8} \text{m}^{3}/\text{kg})\)
    \(10^{5} \Delta \Phi\)
    \(( \text{m}^{2}/\text{s}^{2})\)
    0 26.148 34.646 22.722 512.09 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">512.15 0.051
    1 26.148 34.646 22.722 512.09 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">512.61 0.461
    10 26.163 34.645 22.717 513.01 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">512.89 0.513
    20 26.167 34.655 22.724 512.76 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">466.29 0.466
    30 25.640 35.733 23.703 419.82 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">322.38 0.645
    50 18.967 35.944 25.755 224.93 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">185.56 0.464
    75 15.371 35.904 26.590 146.19 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">136.18 0.340
    100 14.356 35.897 26.809 126.16 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">120.91 0.302
    125 13.059 35.696 26.925 115.66 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">111.93 0.280
    150 12.134 35.567 27.008 108.20 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">100.19 0.501
    200 10.307 35.360 27.185 92.17 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">87.41 0.437
    250 8.783 35.168 27.290 82.64 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">79.40 0.397
    300 8.046 35.117 27.364 76.16 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">66.68 0.667
    400 6.235 35.052 27.568 57.19 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">52.71 0.527
    500 5.230 35.018 27.667 48.23 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">46.76 0.468
    600 5.005 35.044 27.710 45.29 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">44.67 0.447
    700 4.756 35.027 27.731 44.04 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.69 0.437
    800 4.399 34.992 27.744 43.33 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.22 0.432
    900 4.291 34.991 27.756 43.11 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.12 0.431
    1000 4.179 34.986 27.764 43.12 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.10 0.431
    1100 4.077 34.982 27.773 43.07 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.12 0.431
    1200 3.969 34.975 27.779 43.17 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.28 0.433
    1300 3.909 34.974 27.786 43.39 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.38 0.434
    1400 3.831 34.973 27.793 43.36 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.31 0.433
    1500 3.767 34.975 27.802 43.26 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.20 1.080
    1750 3.600 34.975 27.821 43.13 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">43.00 1.075
    2000 3.401 34.968 27.837 42.86 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">42.13 2.106
    2500 2.942 34.948 27.867 41.39 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">40.33 2.016
    3000 2.475 34.923 27.891 39.26 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">39.22 1.961
    3500 2.219 34.904 27.900 39.17 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
              \)\((10^{-8} \text{m}^{3}/\text{kg})\)">40.08 2.004
    4000 2.177 34.896 27.901 40.98 \)\((10^{-8} \text{m}^{3}/\text{kg})\)">   
    Table \(\PageIndex{3}\). Computation of Relative Geostrophic Currents.
    Data from Endeavor Cruise 88, Station 61 and 64
    Pressure
    (decibar)
    \(10^{-5} \Phi_{61}\)
    \(\text{m}^{2}/\text{s}^{2}\)
    \(\sum \Delta \Phi\)
    \(\text{at } 61^{*}\)
    \(10^{-5} \Phi_{64}\)
    \(\text{m}^{2}/\text{s}^{2}\)
    \(\sum \Delta \Phi\)
    \(\text{at } 64^{*}\)
    \(V\)
    \((\text{m/s})\)
    0   2.1872   1.2583 0.95
      0.046   0.051    
    1   2.1826   1.2532 0.95
      0.396   0.461    
    10   2.1430   1.2070 0.96
      0.423   0.513    
    20   2.1006   1.1557 0.97
      0.424   0.466    
    30   2.0583   1.1091 0.97
      0.752   0.645    
    50   1.9830   1.0446 0.96
      0.755   0.464    
    75   1.9075   0.9982 0.93
      0.644   0.340    
    100   1.8431   0.9642 0.90
      0.574   0.302    
    125   1.7857   0.9340 0.87
      0.522   0.280    
    150   1.7335   0.9060 0.85
      0.948   0.501    
    200   1.6387   0.8559 0.80
      0.894   0.437    
    250   1.5493   0.8122 0.75
      0.871   0.397    
    300   1.4623   0.7725 0.71
      1.704   0.667    
    400   1.2919   0.7058 0.60
      1.668   0.527    
    500   1.1252   0.6531 0.48
      1.588   0.468    
    600   0.9664   0.6063 0.37
      1.432   0.447    
    700   0.8232   0.5617 0.27
      1.242   0.437    
    800   0.6990   0.5180 0.19
      1.045   0.432    
    900   0.5945   0.4748 0.12
      0.808   0.431    
    1000   0.5137   0.4317 0.08
      0.619   0.431    
    1100   0.4518   0.3886 0.06
      0.546   0.431    
    1200   0.3972   0.3454 0.05
      0.517   0.433    
    1300   0.3454   0.3022 0.04
      0.504   0.434    
    1400   0.2950   0.2588 0.04
      0.497   0.433    
    1500   0.2453   0.2155 0.03
      1.232   1.080    
    1750   0.1221   0.1075 0.01
      1.221   1.075    
    2000   0.0000   0.0000 0.00
      2.389   2.106    
    2500   -0.2389   -0.2106 -0.03
      2.297   2.016    
    3000   -0.4686   -0.4123 -0.06
      2.170   1.961    
    3500   -0.6856   -0.6083 -0.08
      2.097   2.004    
    4000   -0.8952   -0.8087 -0.09
    \(^{*}\) Geopotential anomaly integrated from 2000 dbar level.
    Velocity is calculated from \((10.4.9)\)

    This page titled 10.5: An Example Using Hydrographic Data is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Robert H. Stewart via source content that was edited to the style and standards of the LibreTexts platform.