# 9: Vorticity

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Before the discussion of ocean currents, there is one more key concept that needs to be introduced: vorticity. Essentially, vorticity is the same as rotation in a horizontal plane. Mathematically, the vorticity $$\zeta$$ is defined as:

$\zeta=\dfrac{dv}{dx}-\dfrac{du}{dy} \label{8.1}$

Which is also just the curl of velocity.

$\zeta=\vec{∇⃗} \times \vec{v}$

Positive vorticity means that the fluid rotates counterclockwise, whereas negative vorticity implies clockwise rotation. Using the horizontal momentum balance equations $$(1.2a)$$ and $$(1.2b)$$ from Section 1, a vorticity equation can be constructed, describing the time development of the vorticity of a fluid parcel. Under the assumption that the density of the fluid is constant, this equation becomes:

$\dfrac{d\zeta}{dt}=\dfrac{d\left(\dfrac{dv}{dt}\right)}{dx}-\dfrac{d\left(\dfrac{du}{dt}\right)}{dy}= -f\left(\dfrac{du}{dx}+\dfrac{dv}{dy}\right)-\beta v+K_h \left(\dfrac{d^2\zeta}{dx^2}+\dfrac{d^2\zeta}{dy^2}\right)+K_v\dfrac{d^2\zeta}{dz^2} \label{8.2}$

with $$\beta=\dfrac{df}{dy}$$. The terms on the right-hand side of the equation can be interpreted as follows: $$-f\left(\dfrac{du}{dx}+\dfrac{dv}{dy}\right)$$ says that horizontal divergence or convergence of the flow leads to rotation due to the Coriolis force; $$\beta v$$ is the so-called $$\beta$$-effect: as a parcel moves in the meridional (North-South) direction, it tends to spin up, because the Coriolis force is stronger on one side of the parcel than on the other side; the further terms simply indicate turbulent diffusion of vorticity.

This page titled 9: Vorticity is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Anne Willem Omta.