Skip to main content
Geosciences LibreTexts

9: Vorticity

  • Page ID
    1316
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Before the discussion of ocean currents, there is one more key concept that needs to be introduced: vorticity. Essentially, vorticity is the same as rotation in a horizontal plane. Mathematically, the vorticity \(\zeta\) is defined as:

    \[\zeta=\dfrac{dv}{dx}-\dfrac{du}{dy} \label{8.1}\]

    Which is also just the curl of velocity.

    \[\zeta=\vec{∇⃗} \times \vec{v}\]

    Positive vorticity means that the fluid rotates counterclockwise, whereas negative vorticity implies clockwise rotation. Using the horizontal momentum balance equations \((1.2a)\) and \((1.2b)\) from Section 1, a vorticity equation can be constructed, describing the time development of the vorticity of a fluid parcel. Under the assumption that the density of the fluid is constant, this equation becomes:

    \[\dfrac{d\zeta}{dt}=\dfrac{d\left(\dfrac{dv}{dt}\right)}{dx}-\dfrac{d\left(\dfrac{du}{dt}\right)}{dy}= -f\left(\dfrac{du}{dx}+\dfrac{dv}{dy}\right)-\beta v+K_h \left(\dfrac{d^2\zeta}{dx^2}+\dfrac{d^2\zeta}{dy^2}\right)+K_v\dfrac{d^2\zeta}{dz^2} \label{8.2} \]

    with \(\beta=\dfrac{df}{dy}\). The terms on the right-hand side of the equation can be interpreted as follows: \(-f\left(\dfrac{du}{dx}+\dfrac{dv}{dy}\right)\) says that horizontal divergence or convergence of the flow leads to rotation due to the Coriolis force; \(\beta v\) is the so-called \(\beta\)-effect: as a parcel moves in the meridional (North-South) direction, it tends to spin up, because the Coriolis force is stronger on one side of the parcel than on the other side; the further terms simply indicate turbulent diffusion of vorticity.


    This page titled 9: Vorticity is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Anne Willem Omta.

    • Was this article helpful?