Skip to main content
Geosciences LibreTexts

4.4: Clouds in the Vertical Atmosphere

  • Page ID
    41834
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Upper-level clouds.

    Wherever air temperature and dew point are close to each other, the chances of cloud formation are higher. Most clouds are caused either by rising air (vertical or "cumuloform clouds") or by an influx of moisture in a layer of the atmosphere, creating layered "stratoform" clouds. Regardless of the type of cloud all clouds form when air temperature and dew point temperature are either very close to each other, or are exactly each other. With the exception of fog (which is a type of stratus cloud), clouds typically aren’t present near the surface of the earth, but are instead present at higher altitudes (anywhere from a few hundred feet to over 30,000 feet above the surface). Let’s investigate this a bit. 


    Figure 4.4.1 is a map of weather conditions taken at 0400UTC on July 15th, 2025:

    clipboard_eaf59ad4f218d9a7576a804ae38b07aff.png
    Figure \(\PageIndex{1}\): Surface Observation Data for the Contiguous United States at 0400 UTC on July 15, 2025. (CC BY-NC 4.0American Meteorological Society via Unidata)  Alternative description of image. 
    1. Greensboro, in Central North Carolina, is reporting an air temperature of 72°F and a dew point of 71°F. As such, the air at the surface in Greensboro _____________ saturated.
      1. Is
      2. Is Not
    2. However, Sky Conditions (in the center circle) indicate that _______________ some clouds present overhead in Greensboro.
      1. Are Not
      2. Are
    3. Therefore, there ______________ at least one height above the surface over Greensboro where the air is saturated.
      1. Is       
      2. Is Not

    Figure 4.4.2 is a Stüve Diagram plot of Air Temperature (the right black line) and Dew Point Temperature (the left black line) conditions over Blacksburg, a town in Virginia that is near Greensboro. The data is from a weather balloon launch at 0000UTC on July 15, 2025 (about four hours before the conditions shown in Figure 4.4.1). 

    Upper-Air Data for Blacksburg, Virginia, at 0000 UTC on July 15, 2025. Details in Caption
    Figure \(\PageIndex{2}\): Upper-Air Conditions for Blacksburg, Virginia at 0000 UTC on July 15, 2025. (CC-BY-NC 4.0; University of WyomingAlternative description of image.  

     

    1. The air is saturated whenever the two bold black lines (which represent air temperature and dew point temperature) are very close to or overlap one another. The data plotted in Figure 4.4.2 indicates that ___________ levels of saturated air above the surface near Blacksburg (and thus Greensboro).
      1. Are
      2. Are Not Any
    2. The Air is Saturated at pressure levels between ______________________________.
      1. 800mb and 600mb
      2. 1000mb and 940mb            
      3. 940mb and 850mb 
      4. The air isn’t saturated anywhere. 
    3. This _______________________ the surface observations for Greensboro shown in Figure 4.4.1. 
      1. Confirms
      2. Can Not Confirm

    Figure 4.4.3  is weather balloon data for Oakland, in Central California, taken from a weather balloon launch at 0000UTC on July 15th, 2025, the about four hours before the surface conditions map in Figure 4.4.1.

    Upper-Air Data for Oakland, California, at 0000 UTC on July 15, 2025. Details in Caption
    Figure \(\PageIndex{3}\): Upper-Air Conditions for Oakland, California at 0000 UTC on July 15, 2025. (CC-BY-NC 4.0; University of Wyoming). Alternative description of image. 
    1. Based on the data in Figure 6, there _______________________ above the surface where air is saturated (remember: air is saturated when temperature and dew point lines overlap). 
      1. Are some heights
      2. Are no heights.
    2. This _____________________ the sky cover reported over Oakland, California near the time in Figure 4.4.1. 
      1. Confirms
      2. Cannot Confirm

     


    4.4: Clouds in the Vertical Atmosphere is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?