Skip to main content
Geosciences LibreTexts

4.4: Clouds in the Vertical Atmosphere

  • Page ID
    41834
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Upper-level clouds

    Whenever air temperature and dew point are close to each other, the chances of cloud formation are higher. Most clouds are caused either by rising air (vertical, or "cumuliform clouds") or by an influx of moisture into a layer of the atmosphere, creating layered "stratiform" clouds. Regardless of type, clouds form when the air temperature and the dew point are either very close to each other or exactly the same. With the exception of fog (which is a type of stratus cloud), clouds typically occur at higher altitudes, anywhere from a few hundred feet to over 30,000 feet above the surface. Let’s investigate this a bit. Figure 4.4.1 shows weather conditions at 0400 UTC on July 15, 2025.

    Surface weather observations across continental United States. Details in captions.
    Figure \(\PageIndex{1}\): Surface observation data for the Contiguous United States at 0400 UTC on July 15, 2025. (CC BY-NC 4.0American Meteorological Society via Unidata)  Alternative description of image. 
    1. Greensboro, in Central North Carolina, is reporting an air temperature of 76°F and a dew point of 71°F. As such, the air at the surface in Greensboro _______ saturated.
      1. is
      2. is not
    2. However, sky conditions (in the center circle) indicate that there __________ some clouds present overhead in Greensboro.
      1. are not
      2. are
    3. Therefore, there ________ at least one height above the surface over Greensboro where the air is saturated.
      1. is       
      2. is not

    Figure 4.4.2 is a Stüve Diagram plot of air temperature (the right black line) and dew point temperature (the left black line) conditions over Blacksburg, a town in Virginia that is near Greensboro. The data is from a weather balloon launch at 0000 UTC on July 15, 2025 (about four hours before the conditions shown in Figure 4.4.1). 

    Upper-Air Data for Blacksburg, Virginia, at 0000 UTC on July 15, 2025. Details in Caption
    Figure \(\PageIndex{2}\): Upper-Air Conditions for Blacksburg, Virginia, at 0000 UTC on July 15, 2025. (CC-BY-NC 4.0; University of WyomingAlternative description of image.  
    1. The air is saturated whenever the two bold black lines (representing air temperature and dew point temperature) are very close to or overlap. The data plotted in Figure 4.4.2 indicates that ___________ levels of saturated air above the surface near Blacksburg (and thus Greensboro).
      1. are
      2. are not any
    2. The air is saturated at pressure levels between ______________.
      1. 800 mb and 600 mb
      2. 1000 mb and 940 mb            
      3. 940 mb and 850 mb 
      4. The air isn’t saturated anywhere. 
    3. This __________the sky condition observations for Greensboro shown in Figure 4.4.1. 
      1. confirms
      2. cannot confirm

    Figure 4.4.3 shows radiosonde data for Oakland, Central California, from a weather balloon launch at 0000 UTC on July 15, 2025, about 4 hours before the surface conditions map in Figure 4.4.1.

    Upper-Air Data for Oakland, California, at 0000 UTC on July 15, 2025. Details in Caption
    Figure \(\PageIndex{3}\): Upper-Air Conditions for Oakland, California, at 0000 UTC on July 15, 2025. (CC-BY-NC 4.0; University of Wyoming). Alternative description of the image. 
    1. Based on the data in Figure 4.4.3, there ____________ above the surface where air is saturated (remember: air is saturated when temperature and dew point lines overlap). 
      1. are some heights
      2. are no heights.
    2. This ___________ the sky cover reported over Oakland, California near the time in Figure 4.4.1. 
      1. confirms
      2. cannot confirm

    This page titled 4.4: Clouds in the Vertical Atmosphere is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Neel Desai & Alicia Mullens .

    • Was this article helpful?