Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Geosciences LibreTexts

5: Take-home messages

( \newcommand{\kernel}{\mathrm{null}\,}\)

  • The census of biomass distribution (≈550 Gt C) on Earth provides an integrated global picture of the relative and absolute abundances of all kingdoms of life: plants (≈450 Gt C), bacteria (≈70 Gt C), archaea (≈7 Gt C), and animals (≈2 Gt C) ;
  • Terrestrial biomass is about two orders of magnitude higher than marine biomass, and a total of ≈6 Gt C is estimated in marine organisms;
  • Plant biomass (which dominates the biosphere) is mostly located on land; it accounts for less than 10% of the total biomass in the ocean.
  • Animals, protists, and bacteria together account for ≈80% of marine biomass, whereas on land they account for only ≈2%.
  • The animal biomass is predominantly marine; it consists of small mesopelagic fish and crustaceans, mainly copepods, shrimp, and krill.
  • The marine environment is primarily occupied by microbes, primarily bacteria and protists, which account for ≈70% of the total marine biomass. The remaining ≈30% is primarily composed of arthropods and fish.
  • Viruses dominate the ocean in terms of numbers but constitute only ≈1% of the total biomass.
  • The deep subsurface holds ≈15% of the total biomass of the biosphere. It is mainly composed of bacteria and archaea.
  • The global marine biomass pyramid contain much more consumers (≈5 Gt C) than producers (≈1 Gt C). Conversely, on land, the biomass of primary producers (≈450 Gt C) is much larger than that of primary and secondary consumers (≈20 Gt C).
  • The mass of humans is an order of magnitude greater than that of all wild mammals combined.
  • Humans have had a historical impact on the overall biomass of most important taxa, namely:
    • The huge decrease in total biomass of wild animals, including fish;
    • The gain in total mammalian biomass due to livestock husbandry;
    • The profound reshaping in the total quantity of carbon sequestered by plants.
  • The main gaps in our knowledge concern the distribution of biomass among different microbial taxa, such as bacteria, archaea, protists and fungi.
  • Our knowledge of the biomass composition of the different taxa is mainly determined by our ability to sample, for example, in deep marine subsurface environments.

5: Take-home messages is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

Support Center

How can we help?