9.5: Faults
- Last updated
- Aug 21, 2024
- Save as PDF
- Page ID
- 32371
- Chris Johnson, Matthew D. Affolter, Paul Inkenbrandt, & Cam Mosher
- Salt Lake Community College via OpenGeology
( \newcommand{\kernel}{\mathrm{null}\,}\)
Faults are the places in the crust where brittle deformation occurs as two blocks of rocks move relative to one another. Normal and reverse faults display vertical, also known as dip-slip, motion. Dip-slip motion consists of relative up-and-down movement along a dipping fault between two blocks, the hanging wall, and footwall. In a dip-slip system, the footwall is below the fault plane and the hanging wall is above the fault plane. A good way to remember this is to imagine a mine tunnel running along a fault; the hanging wall would be where a miner would hang a lantern and the footwall would be at the miner’s feet.

Faulting as a term refers to the rupture of rocks. Such ruptures occur at plate boundaries but can also occur in plate interiors as well. Faults slip along the fault plane. The fault scarp is the offset of the surface produced where the fault breaks through the surface. Slickensides are polished, often grooved surfaces along the fault plane created by friction during the movement.
A joint or fracture is a plane of brittle deformation in the rock created by the movement that is not offset or sheared. Joints can result from many processes, such as cooling, depressurizing, or folding. Joint systems may be regional affecting many square miles.
Normal Faults
Normal faults move by a vertical motion where the hanging wall moves downward relative to the footwall along the dip of the fault. Normal faults are created by tensional forces in the crust. Normal faults and tensional forces commonly occur at divergent plate boundaries, where the crust is being stretched by tensional stresses. Examples of normal faults in Utah are the Wasatch Fault, the Hurricane Fault, and other faults bounding the valleys in the Basin and Range province.

Grabens, horsts, and half-grabens are blocks of crust or rock bounded by normal faults. Grabens drop down relative to adjacent blocks and create valleys. Horsts rise up relative to adjacent down-dropped blocks and become areas of higher topography. Where occurring together, horsts and grabens create a symmetrical pattern of valleys surrounded by normal faults on both sides and mountains. Half-grabens are a one-sided version of a horst and graben, where blocks are tilted by a normal fault on one side, creating an asymmetrical valley-mountain arrangement. The mountain-valleys of the Basin and Range Province of Western Utah and Nevada consist of a series of full and half-grabens from the Salt Lake Valley to the Sierra Nevada Mountains.
![By Horst_graben.jpg: U.S. Geological Survey derivative work: Gregors (talk) 11:17, 7 June 2011 (UTC) (Horst_graben.jpg) [Public domain], via Wikimedia Commons While the area extends, individual grabens drop down relative to the horsts.](https://geo.libretexts.org/@api/deki/files/33076/Horst-Graben.svg_-300x154.png?revision=1&size=bestfit&width=486&height=250)
Normal faults do not continue to clear into the mantle. In the Basin and Range Province, the dip of a normal fault tends to decrease with depth, i.e., the fault angle becomes shallower and more horizontal as it goes deeper. Such decreasing dips happen when large amounts of extension occur along very low-angle normal faults, known as detachment faults. The normal faults of the Basin and Range, produced by tension in the crust, appear to become detachment faults at greater depths.
Reverse Faults
In reverse faults, compressional forces cause the hanging wall to move up relative to the footwall. A thrust fault is a reverse fault where the fault plane has a low dip angle of less than 45°. Thrust faults carry older rocks on top of younger rocks and can even cause the repetition of rock units in the stratigraphic record.

Convergent plate boundaries with subduction zones create a special type of “reverse” fault called a megathrust fault where denser oceanic crust drives down beneath less dense overlying crust. Megathrust faults cause the largest magnitude earthquakes yet measured and commonly cause massive destruction and tsunamis.


Strike-Slip Faults
Strike-slip faults have side-to-side motion. Strike-slip faults are most commonly associated with transform plate boundaries and are prevalent in transform fracture zones along mid-ocean ridges. In pure strike-slip motion, fault blocks on either side of the fault do not move up or down relative to each other, rather move laterally, side to side. The direction of the strike-slip movement is determined by an observer standing on a block on one side of the fault. If the block on the opposing side of the fault moves left relative to the observer’s block, this is called sinistral (or left-lateral) motion. If the opposing block moves right, it is dextral (or right-lateral) motion. An example of a dextral, right-lateral strike-slip fault is the San Andreas Fault, which denotes a transform boundary between the North American and Pacific plates. An example of a sinistral, left-lateral strike-slip fault is the Dead Sea fault in Jordan and Israel.

Bends along strike-slip faults create areas of compression or tension between the sliding blocks. Tensional stresses create transtensional features with normal faults and basins, such as the Salton Sea in California. Compressional stresses create transpressional features with reverse faults and cause small-scale mountain building, such as the San Gabriel Mountains in California. The faults that splay off transpression or transtension features are known as flower structures.

Video showing how faults are classified.