Skip to main content
Geosciences LibreTexts

12.8: Using Manures

  • Page ID
    25066
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Manures, like other organic residues that decompose easily and rapidly release nutrients, are usually applied to soils in quantities judged to supply sufficient nitrogen for the crop being grown in the current year. It might be better for building and maintaining soil organic matter to apply manure at higher rates, but doing so may cause undesirable nitrate accumulation in leafy crops and excess nitrate leaching to groundwater. High nitrate levels in leafy vegetable crops are undesirable in terms of human health, and the leaves of many plants with high N seem more attractive to insects. In addition, salt damage to crop plants can occur from high manure application rates, especially when there is insufficient leaching by rainfall or irrigation (also with covered ground like high tunnels). Very high amounts of added manures, over a period of years, also lead to high soil phosphorus levels (Table 12.2). It is a waste of money and resources to add unneeded nutrients to the soil, which will mostly be lost by leaching or runoff instead of contributing to crop nutrition. On soils with phosphorus significantly above the optimum level—indicating a long-term farm imbalance of imports and exports of phosphorus—manure applications may need to be based on satisfying crop needs of P instead of N. This may mean exporting a portion of manure from the farm so as to keep soil P from increasing even further.

    Manure Application

    A common per-acre rate of dairy manure application is 10–30 tons fresh weight of solid manure or 4,000–11,000 gallons of liquid manure. These rates will supply approximately 50–150 pounds of available nitrogen (not total) per acre, assuming that the solid manure is not too high in straw or sawdust and actually ties up soil nitrogen for a while (see discussion below on estimating N availability). If you are growing crops that don’t need that much nitrogen, such as small grains, 10–15 tons (around 4,000–6,000 gallons) of solid manure should supply sufficient nitrogen per acre. For a crop that needs a lot of nitrogen, such as corn, 20–30 tons (around 8,000–12,000 gallons) per acre may be necessary to supply its nitrogen needs. Low rates of about 10 tons (around 4,000 gallons) per acre are also suggested for each of the multiple applications used on a grass hay crop. In total, grass hay crops need at least as much total nitrogen applied as does a corn crop. There has been some discussion about applying manures to legumes. This practice has been discouraged because the legume uses the nitrogen from the manure, and much less nitrogen is fixed from the atmosphere. However, the practice makes sense on intensive animal farms where there can be excess nitrogen, although grasses may then be a better choice for manure application.

    Application methods. For the most nitrogen benefit to crops, manures should be incorporated into the soil in the spring immediately after spreading on the surface. About half of the total nitrogen in dairy manure comes from the urea in urine that quickly converts to ammonium (NH4+). This ammonium represents almost all of the readily available nitrogen present in dairy manure. As materials containing urea or ammonium dry on the soil surface, the ammonium is converted to ammonia gas (NH3) and lost to the atmosphere (also causing odor concerns). If dairy manure stays on the soil surface, about 25% of the nitrogen is lost after one day and 45% is lost after four days, but that 45% of the total represents around 70% of the readily available nitrogen. This problem is significantly lessened if about half an inch or more of rainfall occurs shortly after manure application, leaching ammonium from the manure into the soil. Leaving manure on the soil surface is also a problem because runoff waters may carry significant amounts of nutrients from the field. When this happens, crops don’t benefit as much from the manure application, and surface waters become polluted. Some liquid manures—those with low solids content—penetrate the soil more deeply. When applied at normal rates, these manures will not be as prone to losing ammonia by surface drying. However, in humid regions, much of the ammonia-N from manure may be lost if it is incorporated in the fall when no crops are growing. Fall injection of liquid manure, instead of broadcasting on the surface and then disking or plowing, may greatly reduce the loss of ammonia nitrogen.

    Other nutrients contained in manures, in addition to nitrogen, make important contributions to soil fertility. The availability of phosphorus and potassium in manures should be similar to what is in commercial fertilizers. (However, some recommendation systems assume that only around 50% of the phosphorus and 90% of the potassium is available.) The phosphorus and potassium contributions contained in 20 tons of dairy manure are approximately equivalent to about 30–50 pounds of phosphate and 180–200 pounds of potash from fertilizers. The sulfur content as well as trace elements in manure, such as the zinc previously mentioned, also add to the fertility value of this resource.

    Because half of the nitrogen and almost all of the phosphorus is in the solids, a higher proportion of these nutrients remain in sediments at the bottom when a liquid system is emptied without properly agitating the manure. Uniform agitation is recommended if the goal is to apply similar levels of solids and nutrients across target fields. A manure system that allows significant amounts of surface water penetration and then drainage, such as a manure stack of well-bedded dairy or beef cow manure, may lose a lot of potassium because it is so soluble. The 20% leaching loss of potassium from stacked dairy manure mentioned above occurred because potassium was mostly found in the liquid portion of the manure.

    Timing of Applications

    Manures are best applied to annual crops, such as corn, small grains and vegetables, in one dose just before soil tillage (unless a high amount of bedding is used, which might tie up nitrogen for a while—see the discussion of C:N ratios in Chapter 9). If the manure is surface applied, this allows for rapid incorporation by plow, chisel, harrow, disk or aerator. If injected, no further tillage may be needed, but application close to planting time is still best, because the possibility of loss by runoff and erosion is reduced. It also is possible to inject liquid manures either just before the growing season starts or as a sidedressing to row crops. Fall manure applications on annual row crops, such as corn, may result in considerable nitrogen loss, even if manure is incorporated. Fall-applied manure in humid climates allows ammonium conversion to nitrate and then leaching and denitrification before nitrogen is available to next year’s crop. A three-year New York study showed about twice the N leaching losses from fall-applied compared to spring-applied liquid manure on corn silage, and the losses were greatest with early fall application when the soils were still warm and allowed for manure decomposition.

    injecting liquid manure into shallow frozen soils
    Figure 12.2. Injection of liquid manure into shallow frozen soils, which eliminates compaction concerns and reduces spring application volumes. Photo by Eleanor Jacobs.

    Without any added nitrogen, perennial grass hay crops are constantly nitrogen deficient. Application of a moderate rate of manure, about 50–75 pounds worth of available nitrogen, in early spring and following each harvest is the best way to apply manure. Spring applications may be at higher rates, but wet soils in early spring may not allow manure application without causing significant compaction. Manure applications on grass surfaces (when spread uniformly) have very low risk for nitrate leaching, but ammonia losses are higher unless disc injectors or tine aerators are used.

    Although the best use of manure is to apply it near the time when the crop needs the nutrients, sometimes time and labor management or insufficient storage capacity causes farmers to apply it at other times. In the fall, manure can be applied to grasslands that don’t flood, or to tilled fields that will either be fall plowed or planted to a winter cover crop. Although legal in most states, it is not a good practice to apply manures when the ground is frozen or covered with snow. The nutrient losses that can occur with runoff from winter applied manure are both an economic loss to the farm and an environmental concern. Ideally, surface applications of manure in winter would be done only on an emergency basis. However, there are windows of opportunity for incorporating and injecting winter applied manure during periods when the soil has a shallow frozen layer, 2–4 inches thick (frost tillage; see Chapter 16). Farmers in cold climates may use those time periods to inject manure during the winter (without runoff concerns) and relieve crunch time for spring application (Figure 12.2).

    E. COLI 0157:H7

    The bacteria strain known as E. coli 0157:H7 has caused numerous outbreaks of severe illness in people who ate contaminated meat and a few known outbreaks from eating vegetables, once when water used to wash lettuce was contaminated with animal manure and once from spinach grown near a cattle farm. This particular bacteria is a resident of cows’ digestive systems. It does no harm to the cow, but, probably because of the customary practice of feeding low levels of antibiotics when raising cattle, it is resistant to a number of commonly used antibiotics for humans. This problem only reinforces the commonsense approach to manure use. When using manure that has not been thoroughly composted to grow crops for direct human consumption, especially leafy crops like lettuce that grow low to the ground and root crops such as carrots and potatoes, special care should be taken. Before planting your crop, avoid problems by planning a three-month period between incorporation and harvest. For short-season crops, this means that the manure should be incorporated long before planting. Although there has never been a confirmed instance of contamination of vegetables by E. coli 0157:H7 or other disease organisms from manure incorporated into the soil as a fertility amendment, being cautious and erring on the side of safety is well justified.


    This page titled 12.8: Using Manures is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Fred Magdoff & Harold van Es (Sustainable Agriculture Research and Education (SARE) program) via source content that was edited to the style and standards of the LibreTexts platform.