Skip to main content
Geosciences LibreTexts

10.5: A Case Study, Gabe Brown

  • Page ID
    25047
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Bismarck, North Dakota

    It’s fair to say that Gabe Brown didn’t see change coming when he and his wife Shelly purchased their now-5,000-acre ranch from Shelly’s parents upon their retirement in 1991. The ranch, which had been operated by Brown’s in-laws, produced monocultures of small grains and relied on conventional production methods, including frequent tillage, fertilization, season-long grazing and chemical treatments. As Brown himself had been taught those production models for most of his life, he continued to work the ranch as it had been run for decades.

    But 1995 and 1996 brought devastating hailstorms that destroyed his crops, and a drought in 1997 decimated that year’s crop. As if that wasn’t punishment enough, another hailstorm followed in 1998, destroying his crops once again. If the ranch was going to survive, things needed to change, and the land needed to recover. Bismarck is not an easy place to farm—the temperature can drop below freezing more than 220 days a year and annual rainfall averages around 16 inches, most of which falls during May and June thunderstorms. These extremes make severe weather events even more hazardous, and Brown was experiencing that firsthand.

    At risk of losing his ranch, Brown was suddenly thrust into the position where he had to change his practices in order to save his business. He had heard about and learned of the successes of other farmers who chose a soil-first strategy for their operations. Those regenerative agriculture practices focused on reducing or eliminating tillage, ending the habitual use of synthetic chemicals for pest management and fertilization, and planting cover crops to reduce erosion and to capture nutrients in the soil. Though there was no way to control the climate or to stop extreme weather events, shifting to holistic management could make the property more resilient by strengthening the soil to protect it from wind and water, improving water infiltration and waterholding capacities to reduce drought risks, and shielding the land from temperature extremes by keeping it covered with either a living cover crop or crop residues. If he could rehabilitate the soil and bring it back to life by treating his land as a living organism, it was likely his business would not only survive but would also thrive.

    Committed to saving his land and bringing the ranch back to life, Brown made a choice. Step by step, he experimented with and integrated regenerative, holistic production methods into the operation of Brown’s Ranch, which now produces a variety of cash crops, cover crops, and grass-finished beef and lamb, as well as pastured laying hens, broilers and pork. “We haven’t used synthetic fertilizers since 2008, and we use no fungicides or other pesticides,” notes Brown. As a result of shifting to regenerative agriculture practices, the no-till ranch has seen immense improvements in all aspects of the operation, including reduced erosion, improved yields, increased soil organic matter, several new inches of topsoil and increased profitability.

    During the transition, Brown fully committed to using a diverse mix of cover crops, which have increased his soil organic matter, reduced weed pressure, promoted beneficials, improved waterholding capacity and improved infiltration by breaking up soil compaction. His cover crop mixes include up to 25 different species. “Our goal is to have a living root in the soil as long as possible,” Brown states. Every acre of his cropland has “either a cover crop growing before the cash crop, after the cash crop, or with the cash crop.” Cover crop residue then helps to maintain desired soil temperature and to feed beneficial organisms.

    Soil organic matter levels were 1.7–1.9% when he purchased the operation, and the precipitation infiltration rate was a scant half an inch per hour. But after more than 20 years of cover cropping, livestock integration and diverse crop rotations, Brown’s Ranch has soil organic matter levels that hover around 5.3–7.9%, and the infiltration rate has skyrocketed to more than 30 inches of rainfall per hour, which means that precipitation always enters the soil and runoff never occurs.

    Livestock are thoroughly integrated throughout his ranch, including on the 2,000 acres of cropland. Brown believes grazing livestock plays a critical role in improving soil health. The integration of livestock into the cropping system results in deposits of dung and urine on the land. Those deposits are consumed by macro- and microorganisms that provide nutrients to the living crops and subsequent covers.

    When there is a nutrition and forage need that arises during the season, Brown relies on his cover cropping plan to fill that gap. Fall-season biennials like winter triticale and hairy vetch meet nutrient requirements for calving while also providing “armor” for the soil. Soil sample data shows that grazed fields with a diverse cover crop mix have increased availability of all nutrients, thus adding to profitability.

    Brown’s increased crop yields and financial savings have shown to be quite impressive: “We have a 127-bushel-proven dryland corn yield, while the county average is under 100. So we’re over 25% higher than county average, without many of the costs involved. We’re saving a tremendous amount on inputs.” Brown’s Ranch relies on its healthy soil to provide the necessary nutrients for its crops: The diverse cover crop mix feeds soil organisms, which in turn provide necessary nutrients for crop growth.

    Pasture management at Brown’s Ranch is guided by the principles of getting adequate organic residue into contact with the soil through animal impact and then allowing forages plenty of time to recover from grazing. This means Brown’s rotational grazing strategy is very intensive: Stocking rates are high and rotations are frequent. Permanent pastures are 15–40 acres in size and are divided further with portable fencing into paddocks one sixth of an acre to 5 acres. The 300-pair cowherd is typically moved once a day, and 200–600 yearlings are moved 1–5 times a day. While this seems like a lot of work, solar-powered gate openers that operate on a timer allow the animals to move themselves.

    In this system, cattle will usually consume 30–40% of the aboveground biomass in a particular paddock and will trample most of the remaining sward. Most paddocks receive at least 360 days of recovery before they’re grazed again. The ranch has its own marketing label for its grass-finished beef, lamb, pastured pork, eggs, broilers and honey.Gabe Brown is a soil health convert. When he’s not on the farm working with his son Paul, he is speaking at events and conferences, giving farm tours or teaching at a Soil Health Academy school. His 2018 book Dirt to Soil: One Family’s Journey into Regenerative Agriculture shares the tale of the evolution of Brown’s Ranch and offers solutions to many soil-health difficulties experienced by farmers and ranchers across the United States. By choosing to focus on the health of his living land, and by not being afraid to fail a little along the way, Brown has transformed his business and has made his operation more resilient to any challenges the future may hold.


    This page titled 10.5: A Case Study, Gabe Brown is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Fred Magdoff & Harold van Es (Sustainable Agriculture Research and Education (SARE) program) via source content that was edited to the style and standards of the LibreTexts platform.