Skip to main content
Geosciences LibreTexts

5.7.11: Forecasting the 1989 Loma Prieta Earthquake—Close But No Cigar

  • Page ID
    6030
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Overview

    Harry Reid of Johns Hopkins University started this forecast in 1910. Repeated surveys of benchmarks on both sides of the San Andreas Fault before the great San Francisco Earthquake of 1906 had shown that the crust deformed elastically before the earthquake, and the elastic strain was released during the earthquake. Reid figured that all he had to do was to continue measuring the deformation of survey benchmarks, and when the elastic deformation had reached the stage that the next earthquake would release the same amount of strain as in 1906, the next earthquake would be close at hand.

     

    In 1981, Bill Ellsworth of the USGS built on some ideas developed in Japan and the Soviet Union that considered patterns of instrumental seismicity as clues to an earthquake cycle. A great earthquake (in this case, the 1906 San Francisco Earthquake) was followed by a quiet period, then by an increase in the number of small earthquakes leading to the next big one. Ellsworth and his coworkers concluded that the San Andreas Fault south of San Francisco was not yet ready for another Big One. However, after seventy-five years of quiet after the 1906 earthquake, shocks of M6 to M7 similar to those reported in the nineteenth century could be expected in the next seventy years.

     

    Most forecasts of the 1980s relied on past earthquake history and fault slip rates, and much attention was given to the observation that the southern end of the 1906 rupture, north of the mission village of San Juan Bautista, had moved only two to three feet, much less than in San Francisco or farther north. In 1982, Allan Lindh of the USGS wrote than an earthquake of magnitude greater than 6 could occur at any time on this section of the fault. His predicted site of the future rupture corresponded closely to the actual 1989 rupture, but his magnitude estimate was too low.

     

    In 1985, at a summit meeting in Geneva, General Secretary Mikhail Gorbachev handed President Ronald Reagan a calculation by a team of Soviet scientists that forecast a time of increased probability (TIP)of large earthquakes in a region including central and most of southern California and parts of Nevada. This forecast was based on a sophisticated computer analysis of patterns of seismicity worldwide. In 1988, the head of the Soviet team, V. I. Keilis-Borok, was invited to the National Earthquake Prediction Evaluation Council (NEPEC) to present a modified version of his TIP forecast. He extended the time window of the forecast from the end of 1988 to mid-1992 and restricted the area of the forecast to a more limited region of central and southern California, an area that included the site and date of the future Loma Prieta Earthquake.

     

    Several additional forecasts were presented by scientists of the USGS, including one that indicated that an earthquake on the Loma Prieta segment of the San Andreas Fault was unlikely. These, like earlier forecasts, were based on past earthquake history, geodetic changes, and patterns of seismicity, but none could be rigorously tested.

     

    In early 1988, the Working Group on California Earthquake Probabilities (WGCEP) published a probability estimate of earthquakes on the San Andreas Fault System for the thirty-year period 1988-2018. This estimate was based primarily on the slip rate and earthquake history of individual faults, not on the interaction among different faults in the region. It stated that the thirty-year probability of a large earthquake on the southern Santa Cruz Mountains (Loma Prieta) segment of the San Andreas Fault was one in five, with considerable disagreement among working-group members because of uncertainty about fault slip on this segment. The working group forecast the likelihood of a somewhat smaller earthquake (M6.5 to M7) as about one in three, although this forecast was thought to be relatively unreliable. Still, this was the highest probability of a large earthquake on any segment of the fault except for the Parkfield segment, which was due for an earthquake that same year (an earthquake that did not arrive until 2004, when Parkfield was struck by an earthquake of M 6).

     

    Then on June 27, 1988, an M 5 earthquake rattled the Lake Elsman-Lexington Reservoir area near Los Gatos, twenty miles northwest of San Juan Bautista and a few miles north of the northern end of the southern Santa Cruz Mountains segment described by WGCEP as having a relatively high probability for an earthquake. Allan Lindh of USGS told Jim Davis, the California State Geologist, that this was the largest earthquake on this segment of the fault since 1906, raising the possibility that the Lake Elsman Earthquake could be a foreshock. All agreed that the earthquake signaled a higher probability of a larger earthquake, but it was unclear how much the WGCEP probability had been increased by this event. On June 28, the California Office of Emergency Services issued a short-term earthquake advisory to local governments in Santa Clara, Santa Cruz, San Benito, and Monterey counties, the first such earthquake advisory in the history of the San Francisco Bay Area. This short-term advisory expired on July 5.

     

    On August 8, 1989, another M 5 earthquake shook the Lake Elsman area, and another short-term earthquake advisory was issued by the Office of Emergency Services. This advisory expired five days later. Two months after the advisory was called off, the M 6.9 Loma Prieta Earthquake struck the southern Santa Cruz Mountains, including the area of the Lake Elsman earthquakes.

     

    So was the Loma Prieta Earthquake forecasted? The mainshock was deeper than expected, and the rupture had a large component of reverse slip, also unexpected, raising the possibility that the earthquake ruptured a fault other than the San Andreas. Some of the forecasts were close, and as Harry Reid had predicted eighty years before, much of the strain that had accumulated since 1906 was released. Still, the disagreements and uncertainties were large enough that none of the forecasters was confident enough to raise the alarm. It was a learning experience.


    This page titled 5.7.11: Forecasting the 1989 Loma Prieta Earthquake—Close But No Cigar is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Robert S. Yeats (Open Oregon State) via source content that was edited to the style and standards of the LibreTexts platform.