Skip to main content
Geosciences LibreTexts

9.12: Marine Deposition

  • Page ID
    11048
  • Marine Depositional Processes

    Most of Earth is covered with oceans, there is abundant life in the oceans, most sediments eventually get transported into the oceans, and shallow marine deposits are the most abundant in the in sedimentary record due to their large volume and the low erosion rates in shallow marine environments. You need tectonics to uplift them above sea level to get significant erosion. This happens commonly, so that we can also see them exposed.

    Several processes are unique to shallow marine deposition (and some large lakes): Tides, waves, and storms

    Deltas, Estuaries, and Other Shorelines

    When rivers reach standing water such as a lake or the ocean, the flow speed slows down dramatically. And when flows slow down, sediment is deposited. Almost all of the sediment transported in a river is thus deposited close to the river mouth, with the exception of grains that are fine enough to remain in suspension. Lacustrine and marine processes can rework the deposited sediment to distribute it along shorelines.

    Deltas form at the mouths of rivers that transport enough sediment to build outward. (Building outward is a key component of the definition of a delta. In contrast, estuaries are present where the ocean or lake waters flood up into the river valley.) Deltas require substantial accumulation of sediment, in contrast to estuaries which do not build outward. Sedimentary facies are similar to other depositional environments, but the association of subenvironments are recognizable as deltas. Some of the sub environments include: river facies with all the associated sub environments; shore line deposits including beaches, marshes/swamps, etc.; submarine shelf and slope facies, including storm deposits and turbidites; etc.

    Because deltas are sites of sediment building outward from the coast, they are progradational; the landward depositional environments move seaward over more marine/lacustrine deposits. Thus, delta sequences in the rock record start with deep water, marine (or lacustrine), fine grained sediments and grade upward into shallower water, possible more freshwater, coarser grained sediments. This is one of the distinguishing aspects of deltas that let you define them in the sedimentary record. These changes in grain size and environment typically occur over 1’s to 100’s of meters in the rock record and include many beds.

    All deltas (by definition) have their sediment transported to the delta by rivers. Thus, fluvial deposits are always associated with them. In addition, depending on marine (or lacustrine) conditions, waves and tides can redistribute the fluvial sediment changing the morphology and facies of deltas. There are three main end member categories of deltas when characterized by processes: 1) River dominated; 2) Wave influenced; and 3) Tide influenced. We will come back to these delta types after discussing the marine processes.