# Tutorial - Hide Text (Knowls)

## Introduction

Hidden Text opens up when a link word is clicked.

### Why

This feature can help students pause to think of their own answer before clicking on the link.

### Where you may want hidden text

• Solutions to odd exercises

• Proofs for theorems

• Choose EDIT from the top black taskbar.
• Click at the end of this list below the spot to insert your Hidden Text.
• Select ELEMENTS.
• Choose TEMPLATES, then
• drop down to Template: AddHiddenText
• INSERT TEMPLATE.
• Replace Add texts here. Do not delete this text first.  with: This is hidden!!
• SAVE !!
• see how it looks

spot to insert your Hidden Text

## Modify an Example to have a Hidden Solution

• You will hide the Solution to Example 1 below.
• Choose EDIT from the top black taskbar.
• Click ABOVE THE WORD Solution IN EXAMPLE 1 BELOW.
• Select ELEMENTS, Choose TEMPLATES, then drop down to Template: AddHiddenText, INSERT TEMPLATE.
• Copy the text below Solution and paste it on top of Add texts here. Do not delete this text first.
• SAVE!!
• If it looks good, go back to EDIT mode, rename ANSWER to SOLUTION and erase the original Solution so only your hidden Solution remains.
• SAVE !!
• see how it looks

Example $$\PageIndex{1}$$

Let $$A = \{\mbox{John}, \mbox{Jim}, \mbox{Dave}\}$$ and $$B = \{\mbox{Mary}, \mbox{Lucy}\}$$. Determine $$A\times B$$ and $$B\times A$$.

We find $\displaylines{ A\times B = \{ (\mbox{John},\mbox{Mary}), (\mbox{John},\mbox{Lucy}), (\mbox{Jim}, \mbox{Mary}), (\mbox{Jim}, \mbox{Lucy}), (\mbox{Dave},\mbox{Mary}), (\mbox{Dave},\mbox{Lucy})\}, \cr B\times A = \{ (\mbox{Mary},\mbox{John}), (\mbox{Mary},\mbox{Jim}), (\mbox{Mary},\mbox{Dave}), (\mbox{Lucy},\mbox{John}), (\mbox{Lucy},\mbox{Jim}), (\mbox{Lucy},\mbox{Dave})\}. \cr}$ In general, $$A\times B \neq B\times A$$.
We find $\displaylines{ A\times B = \{ (\mbox{John},\mbox{Mary}), (\mbox{John},\mbox{Lucy}), (\mbox{Jim}, \mbox{Mary}), (\mbox{Jim}, \mbox{Lucy}), (\mbox{Dave},\mbox{Mary}), (\mbox{Dave},\mbox{Lucy})\}, \cr B\times A = \{ (\mbox{Mary},\mbox{John}), (\mbox{Mary},\mbox{Jim}), (\mbox{Mary},\mbox{Dave}), (\mbox{Lucy},\mbox{John}), (\mbox{Lucy},\mbox{Jim}), (\mbox{Lucy},\mbox{Dave})\}. \cr}$ In general, $$A\times B \neq B\times A$$.