Skip to main content
Geosciences LibreTexts

2.2.2: Fundamentals of Plate Tectonics

  • Page ID
    41144
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Plate tectonics is the model or theory that has been used for the past 60 years to understand and explain how the Earth works—more specifically the origins of continents and oceans, of folded rocks and mountain ranges, of earthquakes and volcanoes, and of continental drift. Plate tectonics is explained in some detail in Chapter 10, but is introduced here because it includes concepts that are important to many of the topics covered in the next few chapters.

    1-earth-interior-300x1024.png
    Figure \(\PageIndex{1}\) The components of the interior of the Earth (click on the image to see a full-size version).

    Key to understanding plate tectonics is an understanding of Earth’s internal structure, which is illustrated in Figure \(\PageIndex{1}\). Earth’s core consists mostly of iron. The outer core is hot enough for the iron to be liquid. The inner core—although even hotter—is under so much pressure that it is solid. The mantle is made up of iron and magnesium silicate minerals. The bulk of the mantle surrounding the outer core is solid rock, but is plastic enough to be able to flow slowly. The outermost part of the mantle is rigid. The crust—composed mostly of granite on the continents and mostly of basalt beneath the oceans—is also rigid. The crust and outermost rigid mantle together make up the lithosphere. The lithosphere is divided into about 20 tectonic plates that move in different directions on Earth’s surface.

    An important property of Earth (and other planets) is that the temperature increases with depth, from close to 0°C at the surface to about 7000°C at the centre of the core. In the crust, the rate of temperature increase is about 30°C every kilometre. This is known as the geothermal gradient.

    Heat is continuously flowing outward from Earth’s interior, and the transfer of heat from the core to the mantle causes convection in the mantle (Figure \(\PageIndex{2}\)). This convection is the primary driving force for the movement of tectonic plates. At places where convection currents in the mantle are moving upward, new lithosphere forms (at ocean ridges), and the plates move apart (diverge). Where two plates are converging (and the convective flow is downward), one plate will be subducted (pushed down) into the mantle beneath the other. Many of Earth’s major earthquakes and volcanoes are associated with convergent boundaries.

    2000px-Oceanic_spreading.svg_.png
    Figure \(\PageIndex{2}\) Depiction of the convection in the mantle and it’s relationship to plate motion

    Earth’s major tectonic plates and the directions and rates at which they are diverging at sea-floor ridges, are shown in Figure \(\PageIndex{3}\).

    Exercise 1.2 Plate

    Using either a map of the tectonic plates from the Internet or Figure \(\PageIndex{3}\) determine which tectonic plate you are on right now, approximately how fast it is moving, and in what direction. How far has that plate moved relative to Earth’s core since you were born?

    plate-motions-1024x697.png
    Figure \(\PageIndex{3}\) A map showing 15 of the Earth’s tectonic plates and the approximate rates and directions of plate motions.

    See Appendix 3 for Exercise 1.2 answers.

    Lithospheric plates interact with their neighbors at their edges, known as boundaries: divergent, convergent, and transform. It is at plate boundaries that plates grow larger, become smaller, or move past one another. At divergent boundaries new oceanic lithosphere is created via volcanism, producing shallow earthquakes, becoming thicker and more dense as it cools, as it is slowly transported away from the spreading center where it initially formed. At convergent boundaries older oceanic lithosphere is lost in subduction zones beneath a neighboring plate and older continental lithosphere is crumpled as it collides with another plate, producing massive mountain ranges. At these boundaries great earthquakes occur and volcanism creates volcanic mountain chains. In places where plates are neither moving apart or moving together, plates slide past one another at transform boundaries. Earthquakes are common at transform boundaries, but volcanism is generally absent.

    This is a cross-sectional diagram illustrating plate tectonics.  At the top of the diagram is the sky with clouds, below that is Earth's surface with land on the far right.  A continental rift zone, a young plate boundary, is forming just to the left.  Even further left is a line of stratovolcanoes being formed above a subducting lithospheric plate.  Here old lithosphere is lost by subduction at a convergent boundary. To the left of that is a vast ocean.  In the middle of the diagram, in the ocean, is a divergent boundary showing where new lithosphere is formed.  Further left we see a sheild volcano forming above a hot spot in the mantle.  At the far left of the diagram a subduction zone in the ocean is creating a line of stratovolcanoes and and island arc as the lithosphere sinks into the mantle.  The diagram continues below the Earth's crust showing a layer of lithosphere sitting on top of the asthenosphere, the uppermost part of the mantle.
    Figure \(\PageIndex{4}\): Plate tectonics cross-sectional diagram. (Public Domain; USGS)

    Media Attributions

    • Figure \(\PageIndex{1}\): © Steven Earle. CC BY.
    • Figure \(\PageIndex{2}\): Oceanic Spreading by Surachit. Public domain.
    • Figure \(\PageIndex{3}\): Tectonic Plates by USGS. Public domain. Adapted by Steven Earle.
    • Figure \(\PageIndex{4}\): Plate Tectonics by USGS. Public domain.

    This page titled 2.2.2: Fundamentals of Plate Tectonics is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Steven Earle (BCCampus) via source content that was edited to the style and standards of the LibreTexts platform.