13.1: Glaciation
- Page ID
- 21773
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)A glacier is a natural accumulation of land ice showing movement. Many times during Earth's history, great ice sheets waxed and waned over the surface.
Causes of glaciation
The onset of a period or stage of glaciation is due to a change in Earth temperature and atmospheric circulation. It is generally accepted that a global decrease of merely 4o to 5oC, especially during the summer, and a substantial increase in the amount of snowfall in subarctic and arctic regions is necessary for the onset of a glacial episode. Serbian scientist Milutin Milankovitch is credited with finding out the cause of this climate change: variations in Earth's orbit around the sun. Changes in the eccentricity of earth orbit, the degree of deviation of the orbit from a perfect circular path, is thought to cause the necessary change in insolation to decrease global temperatures. Recall that the Earth's orbit is elliptical, but over periods of 100,000 years the shape varies. The changes in orbit have been correlated with ocean sediments that record the history of glacial stages. The cyclical nature of warming and cooling correspond well with the estimated dates of glacial and interglacial periods. In addition to the change in eccentricity, the Earth "wobbles" on its axis which alters the amount of insolation reaching the surface of the Earth. [For more about the causes and stages of glaciation in Earth's history, watch these videos]
Video: Milankovitch cycles precession and obliquity: How changes in Earth's rotation can effect Earth's seasons and climate
Anatomy of a Glacier
The immediate reason that glacial advances are initiated is that winter accumulation exceeds the summer loss of snow over a long period of time. Snow metamorphoses into glacial ice under the increasing pressure of accumulated layers of snow. It first changes to a granular form of ice called firn, and ultimately into ice. Glacial ice sometimes looks blue because it absorbs all colors of the visible light spectrum except blue, which it transmits and hence its blue appearance. Glacier ice may also appear white because some ice is fractured with pockets of air that indiscriminately scatter the visible light spectrum.

The mass balance of a glacier determines if it will advance across the surface or not. The mass balance is determined by the amount of gain and loss of ice from the glacier. The mass balance is positive when it accumulates more ice than it loses. A glacier has a negative mass balance if it loses more ice than it gains.
Glaciers form in the zone of accumulation, the portion of the glacier over which accumulation exceeds ablation. Ablation is the loss of ice (or snow) from the glacier. Ablation can occur due to sublimation, wind erosion, melting, and evaporation, with melting usually being the largest component. The zone of accumulation for the large continental ice sheets resides at high latitudes. For mountain glaciers, the zone of accumulation is at a high altitude where temperatures are cold prevent complete summertime melt. The zone of ablation is where loss of ice mass is greater than accumulation. The boundary between these two zones is the firn or equilibrium line. If accumulation exceeds ablation the glacier will grow. If ablation exceeds accumulation, the glacier will retreat by melting faster than it moves forward. You can approximate the location of the equilibrium line by examining an aerial photograph. The glacier looks dirtier below the equilibrium line as glacial sediment is exposed on top of the ice. Above the equilibrium line it is more white because fresh snow usually covers the surface.

Video: "Glacier Power" Go inside a glacier to to help understand power of a glacier (Courtesy of National Geographic)
Glacier Movement
Once the ice reaches a thickness of about 20 meters (66 ft) it will begin to move under the pressure of its weight. Glaciers move across the surface by internal deformation and basal slip. Glaciers slip over the surface especially well when lubricated by meltwater at their base. Generally speaking, flow velocity in a glacier is greatest near the surface of the ice and decreases towards the bottom - just like in a river. The surface moves faster than the base does due to internal deformation and basal slipping. The actual forward movement of a particle of ice in glaciers can easily exceed 100 feet per year, with much of that forward movement balanced by melt.
Variations in the speed of the ice caused by surface irregularities results in differential expansion and compression of the ice and the development of crevasses. A deadly situation for hikers, crevasses can be covered by thin snow layers that collapse under a person's weight.

A glacial surge occurs as an abrupt movement that can cover tens of meters per day. A surge may results from water pressure building at the base which temporarily "floats" the glacier, greatly reducing friction and increasing speed. In 1986 the Hubbard Glacier surged across the mouth of the Russell fjord in Alaska cutting it off from Yakut Bay. Glacier movement exceeded 112 feet per day, compared to a normal rate of 10 inches per day! The Black Rapids Glacier, AK in \(\PageIndex{4}\) is a surging glacier. Tributary glaciers enter the main valley from the left. Massive amounts of glacial sediment have been deposited along the sides of the glacier and up against the valley walls. The tell-tale sign of a surging glacier are the looped moraines that snake their way across the ice.

Types of glaciers
Two major categories of glaciers are alpine and continental glaciers. Alpine glaciers are those that form at high altitudes in mountainous regions where the temperature is favorable for their formation. There are three types of alpine glaciers: cirque, valley, and piedmont. They range from glaciers a few hundred square meters to vast expanses that fill mountain valleys. Cirque glaciers form in bowl-shaped depressions, called cirques, scoured into the side of a mountain. Weathering and erosion by the glacier loosen bedrock at the head of of a preexisting stream valley as ice accumulates. As this erosion proceeds, a depression forms in which the cirque glacier continues to grow basically eroding itself back into slope. The larger Valley glaciers fill former stream valleys with ice as they push outward from their zone of accumulation. Cirque glaciers that grow beyond the limits of the depression in which they form spill out to become valley glaciers. Piedmont glaciers form when valley glaciers flow out of valleys onto the lowland adjacent to a mountain front.
Almost all glaciers globally are currently melting because of human-caused global warming.


Continental glaciers are vast, continuous masses of ice that originate in high latitudes and cover portions of a continent or island Figure \(\PageIndex{7}\)). Continental glaciers flow outwards in all directions from thicker ice near the center of the ice mass towards the thinner periphery of the ice mass. Continental glaciers are considered "unconfined glaciers" because they flow over a landscape and generally are not spatially constrained by it.

There are three types of continental glaciers: ice sheets, ice caps, and outlet. An ice sheet covers an area larger than 50,000 square kilometers (19,305 sq. mil.). Greenland and Antarctica and are covered by massive ice sheets today. The Greenland ice sheet occupies 1,710,000 square kilometers (660,000 sq. mi), nearly 80% of Greenland. The ice sheet is over 3 km (1.9 mi) at its thickest point. The Antarctic ice sheet covers nearly 98% of the continent. With almost 14 million square kilometers (5.4 million sq. miles) of ice, the Antarctic ice sheet is the largest single mass of ice on Earth. The ice sheet has a maximum thickness of 4.78 kilometers (2.97 miles). Both these ice sheets are currently melting, just like almost all glaciers.
An ice cap is a dome-shaped mass of ice of less than 50,000 square kilometers (approximately 19,000 square miles) and usually covering a highland area. Though covering a mountainous region, an ice cap is categorized as a type of continental glacier because it is not constrained by the topography. Think of an ice cap as a precursor to an ice sheet. Outlet glaciers are similar to valley glaciers as they are confined by the topography but originate from an ice cap.