Skip to main content
Geosciences LibreTexts

6.1: Factors that Control Slope Stability

  • Page ID
    33120
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Mass wasting, which is synonymous with “slope failure”, is the failure and down-slope movement of rock or unconsolidated materials in response to gravity. The term “landslide” is almost synonymous with mass wasting, but not quite because some people reserve “landslide” for relatively rapid slope failures, while others do not. Because of that ambiguity, we will avoid the use of “landslide” in this textbook. Instead, wherever possible, mass wasting events will be referred to by specific names that describe the type of material that failed and the type of motion that took place.

    Mass wasting happens because the Earth’s surface is made up of sloped surfaces, and that has happened because tectonic processes have produced uplift. Erosion, driven by gravity, is the inevitable response to that uplift, and mass wasting is a type of erosion. Slope stability is ultimately determined by two factors: the angle of the slope, and the strength of the materials on it.

    Figure \(\PageIndex{1}\) shows a block of rock situated on a rock slope. It is being pulled towards the Earth’s center (straight down) by gravity. We can split the vertical gravitational force into two components relative to the slope, one pushing the block down the slope (the shear force), and the other pushing it into the slope (the normal force). The shear force—which wants to push the block down the slope—most overcome the strength of the connection between the block and the slope, which may be quite weak if the block has split away from the main body of rock or may be very strong if the block is still a part of the rock. This is the shear strength, and in Figure \(\PageIndex{1}\)a it is greater than the shear force, so the block should not move. In Figure \(\PageIndex{1}\)b the slope is steeper, and the shear force is approximately equal to the shear strength. The block may or may not move under these circumstances. In Figure \(\PageIndex{1}\)c the slope is steeper still, so the shear force is considerably greater than the shear strength, and the block will very likely move.

    shear-force-shear-strength-1-1024x268.jpg
    Figure \(\PageIndex{1}\): Differences in the Shear and Normal Components of the Gravitational Force on Slopes with Differing Steepness. The gravitational force is the same in all three cases. In “a” the shear force is substantially less than the shear strength, so the block should be stable. In “b” the shear force and shear strength are about equal, so the block may or may not move. In “c” the shear force is substantially greater than the shear strength, so the block is very likely to move.

    The strength of the materials on slopes can vary widely. Solid rocks tend to be strong, but there is a very wide range of rock strength. If we consider just the strength of the rocks, and ignore issues like fracturing and layering, then most crystalline rocks—like granite, basalt or gneiss—are very strong, while some metamorphic rocks—like schist—are moderately strong. Sedimentary rocks have variable strength. Limestone is strong, some sandstone and conglomerate are moderately strong, while some types of sandstone and all mudstones are weak.

    Fractures, metamorphic foliation or bedding can significantly reduce the strength of a body of rock, and, in the context of mass wasting, this is most critical if the planes of weakness are parallel to the slope and least critical if they are perpendicular to the slope. This is illustrated on Figure \(\PageIndex{2}\): . At locations A and B the bedding is nearly perpendicular to the slope and the situation is relatively stable. At location D the bedding is nearly parallel to the slope and the situation is quite unstable. At location C the bedding is nearly horizontal, and the stability is intermediate between the other two extremes.

    dipping-beds-1024x358.jpg
    Figure \(\PageIndex{2}\): Cross-Section Through an Area with Topographic Relief That is Underlain by Folded Sedimentary Rocks. Relative stability of slopes as a function of the orientation of weaknesses (in this case bedding planes) relative to the slope orientations.

    Unconsolidated sediments are generally weaker than sedimentary rocks because they are not cemented and, in most cases, have not been significantly compressed by overlying materials. Sand and silt tend to be particularly weak; clay is generally a little stronger (unless it is wet, see below), and sand mixed with clay can be stronger still. The deposits that make up the cliffs at Point Grey in Vancouver include sand, silt and clay overlain by sand. As shown on Figure \(\PageIndex{3}\) (left) the finer deposits are relatively strong (they maintain a steep slope), while the overlying sand is relatively weak, has maintained a shallower slope and has recently failed. Glacial till—typically a mixture of clay, silt, sand, gravel and larger clasts—that forms beneath tens to thousands of meters of glacial ice and is well compressed, can be as strong as some sedimentary rock ( Figure \(\PageIndex{3}\) – right).

    sand-till-slopes-1024x477.jpg
    Figure \(\PageIndex{3}\): Left: Glacial Outwash Deposits at Pt. Grey, in Vancouver. The dark lower layer is comprised of sand, silt and clay. The light-colored upper layer is well-sorted sand. Right: Glacial Till at Quadra Island, BC. The till is strong enough to have formed a near-vertical slope.

    Apart from the type of material on a slope, the amount of water it contains is the most important factor controlling its strength. This is especially true for unconsolidated materials, like those shown on Figure \(\PageIndex{3}\), but it also applies to bodies of rock. Granular sediments, like the sand at Pt. Grey, have lots of spaces between the grains. Those spaces may be completely dry (filled only with air), or moist, (often meaning that some spaces are water filled, some grains have a film of water around them and small amounts of water are present where grains are touching each other), or completely saturated (Figure \(\PageIndex{4}\)). Unconsolidated sediments tend to be strongest when they are moist because the small amounts of water at the grain boundaries hold the grains together with surface tension. Dry sediments adhere together only by the friction between grains, and if they are well sorted or well rounded, or both, that adhesion is weak. Saturated sediments tend to be the weakest of all because the large amount of water pushes the grains apart reducing the mount friction between grains. This is especially true if the water is under pressure.

    dry-moist-saturated-1024x367.jpg
    Figure \(\PageIndex{4}\): Depiction of Dry, Moist and Saturated Sand. Air-filled pores are white, water is blue.

    Water will also reduce the strength of solid rock, especially if it has fractures or bedding planes, or clay-bearing zones. This effect is most significant when the water is under pressure, and that’s why you’ll often see holes drilled into rocks on road cuts.

    Water also has a particular effect on clay-bearing materials. All clay minerals will absorb a little bit of water, and this reduces their strength. The smectite clays (such as the bentonite used in cat litter) can absorb a lot of water, and that water pushes the sheets apart on a molecular level and makes the mineral swell. Smectite that has expanded in this way has almost no strength; it is extremely slippery.

    And finally, water can significantly increase the mass of the material on a slope. This will increase the gravitational force pushing it down, but it will also increase the normal force pushing mass against the slope and that will increase the friction, so while adding water may make the material on the slope weaker and more prone to fail, the additional weight doesn’t necessarily contribute to failure.

    Mass Wasting Triggers

    In the foregoing discussion we talked about the shear force and the shear strength of materials on slopes, and about factors that can reduce the shear strength. Shear force is primarily related to slope angle, and this does not change quickly. But shear strength can change quickly for a variety of reasons, and events that lead to a rapid reduction in shear strength are triggers for mass wasting.

    An increase in water content is the most common mass wasting trigger because of the reduction in strength. This can result from rapid melting of snow or ice, by heavy rain, or by some type of event that changes the pattern of water flow on the surface. Rapid melting can be caused by a dramatic increase in temperature (e.g., in spring or early summer) or by a volcanic eruption. Changes in water flow patterns can be caused by earthquakes, or previous slope failures that dam up streams or human structures that interfere with runoff (e.g., building, roads or parking lots). An example of this is the deadly 2005 debris flow in North Vancouver (Figure \(\PageIndex{5}\)). The 2005 failure took place in an area that had failed previously, and in a report written in 1980 it was recommended that steps be taken by the municipal authorities and the residents to address drainage issues. Little was done to improve the situation.[1]

    north-van-slide.jpg
    Figure \(\PageIndex{5}\): Site of the Debris Flow in the Riverside Drive Area of North Vancouver in January, 2005. This debris flow happened during a rainy period but was likely triggered by excess runoff related to the roads at the top of this slope and by landscape features in the area surrounding the house visible here.

    In some cases, a decrease in water content can lead to failure. This is most common with clean sand deposits (e.g., the upper layer in Figure \(\PageIndex{3}\), left), which lose strength when there is no more water around the grains.

    Freezing and thawing can also trigger some forms of mass wasting, more specifically, the freezing can expand the crack between two parts of rock, and then thawing can release a block of rock that was attached to a slope by a film of ice, as illustrated on Figure \(\PageIndex{6}\).

    freeze-thaw-1024x546.jpg
    Figure \(\PageIndex{6}\): Illustration of the Process of Ice Wedging (left) and then Release of a Fragment Because of Melting

    Shaking is another process that can weaken a body of rock or sediment. The most obvious source of shaking is an earthquake, but shaking from highway traffic, construction or mining will also do the job. Several deadly mass wasting events (including snow avalanches) were triggered by the M7.8 earthquake in Nepal in April 2015.

    Saturation with water and then seismic shaking led to the occurrence of thousands of slope failures in the Sapporo area of Hokkaido, Japan in September 2018, as shown on Figure \(\PageIndex{7}\). The area was drenched with rain from tropical storm Jebi on September 4th, and then shaken by a M 6.6 earthquake on September 6th. That combination appears to have triggered thousands of debris flows of water-saturated volcanic materials on steep slopes. There were 41 deaths related to these slope failures.

    abira-1024x388.jpg
    Figure \(\PageIndex{7}\): Left: Slope Failures in the Sapporo Area of Japan Following a Typhoon (Sept. 4th, 2018); and right: Earthquake (Sept. 6th, 2018). (Before and after Landsat 8 images: left: July 2017, right: September 2018).

    Media Attributions


    1. Riverside Drive Landslide, from Natural hazards learning resources at EOAS, UBC, https://blogs.ubc.ca/eoashazards/riv...ive-landslide/

    This page titled 6.1: Factors that Control Slope Stability is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Steven Earle (BCCampus) .

    • Was this article helpful?