Skip to main content
Geosciences LibreTexts

16.5: A Case Study, Steve Groff

  • Page ID
    25216
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Lancaster County, Pennsylvania

    Steve Groff raises vegetables, grains and cover crop seeds on his 215-acre farm in Lancaster County, Pennsylvania, but his soil shows none of the degradation that can occur with intensive cropping. Mixing cash crops such as corn, pumpkins, squash and tomatoes with cover crops in a unique no-till system, Groff’s farm has been untouched by the plow since 1995, with some portions having been no-tilled since 1982.

    “No-till is a practical answer to concerns about erosion, soil quality and soil health,” says Groff, who won a national no-till award in 1999. “I want to leave the soil in better condition than I found it.”

    Groff confronted a rolling landscape pocked by gullies when he began farming with his father after graduating from high school. They regularly used herbicides and insecticides, tilled annually or semiannually, and rarely used cover crops. Like other farmers in Lancaster County, they ignored the effects of tillage on a sloped landscape, which causes an average of 9 tons of soil per acre to wash into the Chesapeake Bay every year.

    Tired of watching 2-foot-deep ditches form on the hillsides after every heavy rain, Groff began experimenting with no-till to protect and improve the soil. “We used to have to fill in ditches to get machinery in to harvest,” Groff says. “I didn’t think that was right.”

    Groff stresses, however, that switching to no-till alone isn’t enough. He has created a new system, reliant on cover crops, rotations, diversity and no-till, to improve the soil. He’s convinced such methods contribute to better yields of healthy crops, especially during weather extremes.

    When the Pennsylvania chapter of the Soil and Water Conservation Society bought a no-till transplanter that could plant vegetable seedlings into slots cut into cover crop residue, Groff was the first farmer to try it, which led him to pioneer what he likes to call the “Permanent Cover” cropping system. The slots are just big enough for the young plants and do not disturb the soil on either side. The result: Groff can prolong the erosion-slowing benefits of cover crops. He now owns three no-till planters—one for transplanting tomatoes, one for corn, and one for squash and pumpkins—as well as a no-till drill for cover crops, all customized with parts and implements from several different equipment companies.

    Groff’s no-till system relies on a selection of cover crops and residues that blanket the soil nearly all year. “The amount of acreage I devote to different cover crops every year is really subjective,” he says, noting that he constantly modifies his cropping plans based on field observations, weather conditions, timing considerations and other factors. In the fall, he uses a no-till seeder to drill a combination of rye and hairy vetch (at seeding rates of 40 and 15 pounds per acre, respectively). He likes the pairing because their root structures grow in different patterns, and the vegetation left behind after termination leaves different residues on the soil surface.

    Introduced to a novel cover crop of forage radish through University of Maryland cover crop research trials hosted at his farm, Groff was so impressed by what he saw that he decided to integrate it into his cover crop combinations. Upon discovering that forage radish cover crop seed was not available, Groff decided to grow his own and sell the surplus to farmers. He then created a variety out of the forage radish and branded it Tillage Radish, which is now grown around the world.

    His typical rotations include planting mixtures of Tillage Radish and oats or crimson clover before corn, as well as a mixture of Tillage Radish, cereal rye, vetch, crimson clover and balansa clover before pumpkins.

    Several attributes make Tillage Radish a practical choice for no-till farmers. For example, its taproots can alleviate compaction problems, so much so that Groff now prefers using radishes instead of his deep ripper to loosen soil in his driveways. Complete dieback following hard frost, impressive weed suppression into spring and relatively rapid nutrient cycling add to Tillage Radish’s appeal.

    In the spring, Groff uses a modified Buffalo rolling stalk-chopper to terminate overwintering covers. He typically sprays glyphosate at low levels (half a pint per acre, or $1 per acre) before rolling to ensure a more complete kill. The chopper flattens and crimps the cover crop, providing a thick mulch. Once it’s flat, he makes a pass with the no-till planter or no-till transplanter.

    The system creates a very real side benefit in reduced insect pest pressure. Once an annual problem, Colorado potato beetle damage has all but disappeared from Groff’s tomatoes. Since he began planting into the mulch, he has greatly reduced his use of pesticides. The thick mat also prevents soil splashing during rain, a primary cause of early blight on tomatoes. “We have slashed our pesticide and fertilizer bill nearly in half, compared to a conventional tillage system,” Groff says. “At the same time, we’re building valuable topsoil and not sacrificing yields.”

    “No-till is not a miracle, but it works for me,” he says. “It’s good for my bottom line, I’m saving soil, and I’m reducing pesticides and increasing profits.” He emphasizes that benefits from no-till management have developed gradually, along with his experience in handling each field. Knowing when to stay off wet fields and choosing the right crop and cover crop rotations, he says, can help farmers new to no-till avoid potential compaction and fertility problems. “My soils have developed a stability that lets me get away with things that I couldn’t do earlier,” he says. “You earn the right to be out there as your soil gets more stable. Basically, the rules of the game change as the game is played.”

    Groff is convinced his crops are better than those produced in soils managed conventionally, especially during weather extremes. His soils foster high levels of earthworm and other biological activity deep in the soil. He promotes his system at annual summer field days that draw huge crowds of farmers and through his website, www.stevegroff.com.


    This page titled 16.5: A Case Study, Steve Groff is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Fred Magdoff & Harold van Es (Sustainable Agriculture Research and Education (SARE) program) via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?