Skip to main content
Geosciences LibreTexts

13.13: Deep- and Shallow-Water Waves

  • Page ID
    31690
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Ultimately, the swell reaches shallower water. Remember the orbitals in a wave that extend to a depth of about one-half the wavelength? Waves traveling in water depths deeper than one-half the wavelength—like ocean swell—are called deep water waves. Their progress is unimpeded by the seafloor. But as waves approach water depths less than one-half the wavelength, the wave orbitals begin to interact with the seafloor. The orbitals at the bottom of the wave are unable to complete their orbits, and they assume a more elliptical path. When the seafloor begins to interfere with the wave orbitals, the wave is said to “feel bottom.” It’s at this point that the life of a deep water wave ends.

    Waves traveling in water depths less than 1/20 of their wavelength are classified as shallow water waves. Now, let’s take a minute to think about what that means. If a wavelength is 100 feet, then 1/20 of its wavelength is 5 feet because 100 / 20 = 5. So that means that when a wave with a wavelength of 100 feet reaches a water depth of 5 feet or shallower, it is officially designated as a shallow water wave. What is the depth of “shallow water” for a 1,000-foot-wavelength wave? (Hint: divide 1,000 by 20. Simple, huh?)

    The behavior of shallow water waves is much different from that of deep water waves. In addition to the Eq. 19.1 above (S = L / T), we can express the speed of a deep water wave as (e.g., Knauss and Garfield 2017):

    Sdeep = 1.56 × T

    (Eq. 19.5)

    where S is the speed of the wave and T is the wave period. S here gives the speed at which some part of the wave—the crest, for example—is moving forward. (Officially, it’s called the wave’s phase speed.) It’s this relation that tells us that longer-period waves travel faster. Deep water waves disperse (see wave dispersion above) because they separate according to their speed.

    Shallow water waves behave differently. The speed of shallow-water waves depends solely on the water depth, according to:

    Sshallow = √(g × z)

    (Eq. 19.6)

    The speed of a shallow water wave equals the square root of the gravitational constant (g, or 9.8 m/s2) times water depth (z).

    What that means is that the speed of a shallow water wave depends solely on depth. Neither wavelength nor wave period makes any difference. For this reason, shallow water waves are nondispersive—they do not separate according to wavelength or wave period.

    One surprising thing about shallow water waves is that they include some waves you would never suspect—tsunami, for example. The wavelength of a large tsunami can be up to 300 miles (482 km). The deepest place in the world ocean, the Mariana Trench, is only 6.79 miles deep (10.9 km). That means tsunami act like shallow water waves everywhere in the ocean. Their speed, then, is governed by the depth of the water. What is the speed of a tsunami traveling across the Mariana Trench? It’s over 700 mph. Cowabunga, indeed!

    For the sake of completeness, waves between wavelengths ½ L and 1/20 L are called intermediate (or transitional) waves. They have a different set of equations that govern their behavior, which, because of their mathematical complexity, we are not going to discuss here.


    This page titled 13.13: Deep- and Shallow-Water Waves is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by W. Sean Chamberlin, Nicki Shaw, and Martha Rich (Blue Planet Publishing) via source content that was edited to the style and standards of the LibreTexts platform.