17.4: Sources
- Page ID
- 42023
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Sources for the Figures
Figure 17.1: Photograph by Jeremy Harbeck, NASA’s Goddard Space Flight Center/Operation IceBridge.
Figure 17.2: Image from NASA. https://lima.nasa.gov/antarctica/.
Figure 17.1.1: Davenport, C., et al. 2015. Greenland is melting away. New York Times. https://www.nytimes.com/interactive/...orld/greenland -is-melting-away.html.
Figure 17.1.2: Rignot, E., Mouginot, J., and Scheuchl, B. 2011. Ice flow of Antarctic ice sheet. Science 33, 1427−1430.
Figure 17.1.3: Photograph by Denise Holland, NYU, 2018.
Figure 17.1.4: Thomas, R. 1979. The dynamics of marine ice sheets. Journal of Glaciology 24(90), 167−177.
Figure 17.1.5: Image from NASA. Figure 17.1.6: Gille, S., McKee, D. C., and Martinson, D. G. 2016. Temporal changes in the Antarctic Circumpolar Current: implications for the Antarctic continental shelves. Oceanography 29(4), 96−105.
Figure 17.2.1: Velicogna, I. 2009. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters 36, L19503.
Figure 17.2.2: Fretwell, P., et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393; Morlighem, M., et al. 2018. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multi-beam echo sounding combined with mass conservation. Geophysical Research Letters 44, 11051–11061.
Figure 17.3.1: Dutton, A., et al. 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019.
Sources for the Text
Overview
Clark, P. U., et al. 2002. Sea-level fingerprinting as a direct test for the source of global Meltwater Pulse IA. Science 295, 2438e2441.
Cuffey, K. M., and Paterson, W. S. B. 2010. The Physics of Glaciers (4th ed.). Elsevier, Oxford, UK.
De Conto, R. M., and Pollard, D. 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531(7596), 591−597.
Ettema, J., et al. 2009. Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling. Geophysical Research Letters 36, L12501.
Fairbanks, R. 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342(6250), 637–642.
Fretwell, P., et al. 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375−393.
IPCC. 2013. Summary for policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., et al. (eds.)]. Cambridge University Press, New York, NY.
Morlighem, M., et al. 2017. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophysical Research Letters 44, 11051−11061.
Rignot, E., Mouginot, J., and Scheuchl, B. 2011. Ice flow of Antarctic ice sheet. Science 33, 1427−1430.
van den Broeke, M., van de Berg, W. J., and van Meijgaard, E. 2006. Snowfall in coastal West Antarctica much greater than previously assumed. Geophysical Research Letters 33, L02505.
WCRP Global Sea Level Budget Group. 2018. Global sea-level budget 1993–present. Earth System Science Data 10, 1551−1590. https://doi .org/10.5194/essd-10-1551-2018.
17.1 How Ice Is Melting
Bassis, J. N., and Walker, C. C. 2012. Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proceedings of the Royal Society A 468, 913–931.
Broeker, W. S. 1991. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278(5343), 1582−1588.
Cuffey, K. M., and Paterson, W. S. B. 2010. The Physics of Glaciers (4th ed.). Elsevier, Oxford, UK.
De Conto, R. M., and Pollard, D. 2016. Contribution of Antarctica to past and future sea-level rise. Nature 531(7596), 591−597.
Francis, J., and Vavrus, S. J. 2012. Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophysical Research Letters 39, L06801.
Gille, S. T., McKee, D. C., and Martinson, D. G. 2016. Temporal changes in the Antarctic Circumpolar Current: implications for the Antarctic continental shelves. Oceanography 29(4), 96–105.
Holland, P. R., et al. 2009. Marine ice in Larsen Ice Shelf. Geophysical Research Letters 36, L11604.
Hughes, T. 1981. The “weak underbelly” of the West Antarctic Ice Sheet. Journal of Glaciology 27, 518−525.
Jenkins, A., and Holland, D. 2007. Melting of floating ice and sea level rise. Geophysical Research Letters 34, L16609.
Joughin, I., et al. 2002. Changes in West Antarctic ice stream velocities: observation and analysis. Journal of Geophysical Research 107(B11), 2289.
Joughin, I., Smith, B., and Medley, B. 2014. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344(6185), 735−738.
King, M., et al. 2018. Seasonal to decadal variability in ice discharge from the Greenland Ice Sheet. Cryosphere 12, 3813–3825.
MacAyeal, D. R., et al. 2003. Catastrophic ice-shelf break-up by an ice-shelf -fragment-capsize mechanism. Journal of Glaciology 49, 22–36.
Meier, M., and Post, A. 1987. Fast tidewater glaciers. Journal of Geophysical Research 92(B9), 9051−9058.
Meier, M., et al. 1985. Photogrammetric Determination of Surface Altitude, Terminus Position, and Ice Velocity of Columbia Glacier, Alaska. US Geological Survey Professional Paper 1258-F. https://pubs.usgs.gov/pp/1258f/report .pdf.
McGrath, D., et al. 2014. The structure and effect of suture zones in the Larsen C Ice Shelf, Antarctica. Journal of Geophysical Research: Earth Surface 119, 588–602.
Rignot, E. J. 1998. Fast recession of a West Antarctic glacier. Science, 281(5376), 549–551.
Rignot, E. 2001. Evidence for rapid retreat and mass loss of Thwaites Glacier, West Antarctica. Journal of Glaciology 47(157), 213−222.
Rignot, E., and Kanagaratnam, P. 2006. Changes in the velocity structure of the Greenland ice sheet. Science 311, 986–990.
Rignot, E., et al. 2013. Ice-shelf melting around Antarctica. Science 341(6143), 266−270.
Rignot, E., et al. 2013. Low‐frequency radar sounding of temperate ice masses in Southern Alaska. Geophysical Research Letters 40(20), 5399−5405.
Rignot, E., et al. 2014. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters 41(10), 3502−3509.
Rignot, E., et al. 2015. Undercutting of marine-terminating glaciers in West Greenland. Geophysical Research Letters 42(14), 5909−5917.
Rignot, E., et al. 2016. Modeling of ocean-induced ice melt rates of five Greenland glaciers over the past two decades. Geophysical Research Letters 43(12), 6374−6382.
Rintoul, S. R., et al. 2017. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Science Advances 2, 1601610.
Schoof, C. 2010. Ice-sheet acceleration driven by melt supply variability. Nature 468, 803−808.
Seroussi, H., et al. 2017. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophysical Research Letters 44(12), 6191−6199.
Shepherd, A., and Wingham, D. 2007. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315, 1529−1532.
Spence, P., et al. 2014. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophysical Research Letters 41, 4601−4601.
Straneo, F., and Heimbach, P. 2015. North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 504, 36−43.
Swart, N., et al. 2018. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience 11, 836−841.
Thomas, R. H., and Bentley, C. R. 1978. A model for Holocene retreat of the West Antarctic ice sheet. Quaternary Research 2, 150–170.
Thompson, D. W. J., and Solomon, S. 2002. Interpretation of recent Southern Hemisphere climate change. Science 296, 895−899.
Wallace, J. M., et al. 2014. Global warming and winter weather. Science 343(6172), 729−730.
Weertman, J. 1974. Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology 13(67), 3–11.
Young, D. A., et al. 2011. A dynamic early East Antarctic Ice Sheet suggested by ice-covered fjord landscapes. Nature 474, 72−75.
17.2 History of Melting
Bamber, J. L., et al. 2013. Paleofluvial megacanyon beneath the central Greenland ice sheet. Science 341, 997−999.
Brancato, V., et al. 2019. Retreat of Denman Glacier, East Antarctica. Science Advances, in review.
Christianson, K., et al. 2016. Sensitivity of Pine Island Glacier to observed ocean forcing. Geophysical Research Letters 43, 10817−10825.
Domack, E., et al. 2005. Stability of the Larsen B ice shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436, 681−685.
He, Z., et al. 2019. 35 years of sea level rise fingerprint from land ice. Geophysical Research Letters, in review.
Jacob, T., et al. 2012. Recent contributions of glaciers and ice caps to sea level rise. Nature 482, 514−518.
Joughin, I., et al. 2002. Changes in West Antarctic ice stream velocities: observation and analysis. Journal of Geophysical Research 107(B11), 2289.
Khan, S. A., et al. 2014. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Climate Change 4, 292–299.
Khazendar, A., et al. 2019. Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nature Geoscience 12, 277−283.
Koch, L. 1928. Contributions to the glaciology of North Greenland. Meddelelser om Gronland 65, 181−464.
Li, X., et al. 2015. Grounding line retreat of Totten glacier, East Antarctica, 1996 to 2013. Geophysical Research Letters 42, 8049−8056.
Li, X., et al. 2016. Ice flow dynamics and mass loss of Totten Glacier, East Antarctica from 1989 to 2015. Geophysical Research Letters 43(12), 6366−6373.
Mouginot, J., et al. 2015. Fast retreat of Zachariæ Isstrøm, northeast Greenland. Science 350(6266), 1357−1361.
Münchow, A., Padman, L., and Fricker, H. A. 2014. Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. Journal of Glaciology 60(221), 489–499.
Reeh, N., et al. 2001. Sea ice and the stability of north and northeast Greenland floating glaciers. Annals of Glaciology 33, 474−480.
Rignot, E., et al. 2004. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophysical Research Letters 31, L18401.
Rignot, E., et al. 2014. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophysical Research Letters 41(10), 3502−3509.
Rignot, E., et al. 2019. Four decades of Antarctic Ice Sheet mass balance from 1979 to 2017. Proceedings of the National Academy of Sciences USA 116(4), 1095−1103.
Rintoul, S. R., et al. 2017. Ocean heat drives rapid basal melt of the Totten Ice Shelf. Science Advances 2, 1601610.
Seroussi, H., et al. 2017. Continued retreat of Thwaites Glacier, West Antarctica, controlled by bed topography and ocean circulation. Geophysical Research Letters 44(12), 6191−6199.
Shepherd, A., and Wingham, D. 2007. Recent sea-level contributions of the Antarctic and Greenland ice sheets. Science 315, 1529−1532.
Shepherd, A., et al. 2012. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189.
Thomas, R., et al. 2013. Continued slowing of the Ross Ice Shelf and thickening of West Antarctic ice streams. Journal of Glaciology 59(217), 838−844.
Velicogna, I. 2009. Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters 36, L19503.
Velicogna, I., and Wahr, J. 2006. Measurements of time variable gravity shows a large mass loss in Antarctica. Science 311, 1754–1756.
17.3 What Can We Do?
Broeker, W. S. 1991. Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science 278(5343), 1582−1588.
Dutton, A., et al. 2015. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019.
Hansen, J., et al. 2016. Ice melt, sea level rise and superstorms: evidence 2°C global warming could be dangerous. Atmospheric Chemistry and Physics 16, 1−52.
IPCC. 2018: Summary for policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., et al. (eds.)]. IPCC and World Meteorological Organization, Geneva, Switzerland.
Mitrovica, J. X., Gomez, N., and Clark, P. U. 2009. The sea-level fingerprint of West Antarctic collapse. Geophysical Journal International 323, 753.

