Skip to main content
Geosciences LibreTexts

11.9: Chapter 11 Summary and Key Term Check

  • Page ID
    20173
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Chapter 11 Main Ideas

    11.1 What Is A Volcano?

    Volcanoes are places where molten rock escapes to Earth’s surface. Some volcanoes are cone-shaped or hill-shaped mountains, and some eruptions happen along fissures. Eruptions are fed by a magma chamber beneath the volcano. Sometimes a volcano collapses into empty space in the magma chamber beneath, forming a caldera.

    Practice Again

    • Basic volcano terminology

    Extra Review

    Query \(\PageIndex{1}\)

    11.2 Materials Produced by Volcanic Eruptions

    Volcanoes produce gas, lava flows, and debris called tephra. The characteristics of a lava flows depend on whether the lava is thin and runny (mafic with low gas content) or thick and sticky (felsic with high gas content). Tephra is classified according to size. Ash is less than 2 mm in diameter, lapilli is between 2 mm and 64 mm, and blocks and bombs are larger than 64 mm.

    Practice Again

    • Types of lava structures
    • Types of pyroclastic materials

    11.3 Types of Volcanoes

    Cinder cones are relatively small straight-sided volcanoes that are composed mostly of mafic rock fragments. Composite volcanoes consist of alternating layers of lava flows and tephra. They tend to be intermediate to felsic in composition, and get steeper toward the top. Shield volcanoes are broad, low, hill-like volcanoes that form from layers of low-viscosity mafic lava.

    Practice Again

    • Types of volcanoes

    Extra Review

    Query \(\PageIndex{2}\)

    11.4 Types of Volcanic Eruptions

    Volcanic eruptions can be classified according to how explosive they are, and how high into the atmosphere they blast material. Hawai’ian eruptions are relatively gentle effusive eruptions of low-viscosity mafic lava, and form shield volcanoes. Strombolian eruptions are more vigorous eruptions of mafic tephra. They blast material hundreds of metres into the air. The tephra falls out of the atmosphere to form a cinder cone. Vulcanian eruptions are explosive eruptions of intermediate to felsic composition lava, producing pyroclastic flows and eruptive columns from 5 to 10 km high. Plinian eruptions are highly explosive eruptions of felsic lava, and can produce eruption columns up to 45 km high. Both Vulcanian and Plinian eruptions are associated with composite volcanoes. Hydrovolcanic eruptions are the explosive result of magma or lava interacting with water, and rapidly changing the water to steam.

    Practice Again

    • Different types of volcanic eruptions

    Extra Review

    Query \(\PageIndex{3}\)

    11.5 Plate Tectonics and Volcanism

    Volcanism is closely related to plate tectonics. Most volcanoes are associated with convergent plate boundaries (at subduction zones), where magma is formed when water from a subducting plate acts as a flux to lower the melting temperature of the adjacent mantle rock. Volcanic activity also occurs at divergent boundaries and areas of continental rifting. At divergent boundaries magma forms because of decompression melting. Decompression melting also takes place within a mantle plume. In ocean-continent collision zones, and in continental rift zones, magma compositions—and thus the nature of volcanism—can be impacted by conduction melting of surrounding non-mantle rocks.

    Practice Again

    • Types of volcanism in different plate tectonic settings

    Extra Review

    Query \(\PageIndex{4}\)

    11.6 Volcanic Hazards

    Most direct volcanic hazards are related to volcanoes that erupt explosively, especially composite volcanoes. Pyroclastic flows, some as hot as 1000 ˚C, can move at hundreds of km/h and will kill anything in the way. Lahars—volcano-related mudflows—can be large enough to destroy entire towns. Lava flows are also destructive, but tend to move slowly enough to permit people to get to safety. Indirect hazards claim far more lives than direct hazards, and include famine related to volcanically-induced climate cooling.

    11.7 Monitoring Volcanoes and Predicting Eruptions

    Clues that a volcanic eruption might soon occur include earthquakes, a change in the type and amount of gases released, and changes in the shape of the volcano as magma moves within it. Volcanoes are monitored using seismometers to detect earthquakes, volcanic gases are sampled and analyzed, and instruments are used to detect deformation of the volcano. These tools make it possible to assess the hazard posed by a given volcano, and the risk of eruption.

    11.8 Volcanoes in British Columbia

    British Columbia and the Yukon Territory include examples of volcanoes that form as a result of fluid-induced melting along a subduction zone (the Wrangell and Garibaldi volcanic belts), as a result of decompression where the crust is thinning and stretching (Stikine Volcanic Belt and Wells Gray-Clearwater Volcanic Field), and because of mantle plume activity (Anahim Volcanic Belt).

    Key Term Check

    What key term from Chapter 11 is each card describing? Turn the card to check your answer.

    Query \(\PageIndex{5}\)


    This page titled 11.9: Chapter 11 Summary and Key Term Check is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Karla Panchuk (University of Saskatchewan) via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?