Skip to main content
Geosciences LibreTexts

16.2: Nebular theory

  • Page ID
    22736
    • Callan Bentley, Karen Layou, Russ Kohrs, Shelley Jaye, Matt Affolter, and Brian Ricketts
    • OpenGeology

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The prevailing scientific explanation for the origin of the Earth does a good job of not only explaining the Earth’s formation, but the Sun and all the other planets too. Really, it’s not “the Earth’s origin story” alone so much as it is the origin story of the whole solar system. Not only that, but our Sun is but one star among a hundred million in our galaxy, and our galaxy is one of perhaps a hundred million in the universe. So the lessons we learn by studying our own solar system can likely be applied more generally to the formation of other solar systems elsewhere, including those long ago, in galaxies far, far away. The vice versa is also true: Our understanding of our own solar system’s origin story is being refined as we learn more about exoplanets, some of which defy what we see in our own system; “hot Jupiters” and “super-Earths,” for instance, are features we see in other star systems but not our own.

    When we use powerful telescopes to stare out into the galaxy, we observe plenty of other stars, but we observe other things too, including fuzzy looking features called nebulae. A nebula is a big cloud of gas and dust in space. It’s not as bright as a star because it’s not undergoing thermonuclear fusion, with the tremendous release of energy that accompanies that process. An example of a nebula that you are likely to be able to see is in the constellation Orion. Orion’s “belt,” three stars in a row, is a readily identifiable feature in the northern hemisphere’s night sky in winter. A smaller trio of light spots “dangle” from the belt; this is Orion’s sword scabbard. A cheap pair of binoculars will let you examine these objects for yourself; you will discover that the middle point of light in this smaller trio is not a star. It is a nebula called Messier 42.

    The Messier 42 nebula, shown in the context of the "scabbard" of the constellation Orion. Graphic art by Callan Bentley, reworking material from several OER sources.
    Figure \(\PageIndex{1}\): The Messier 42 nebula, shown in the context of the “scabbard” of the constellation Orion.

    Nebulae like Messier 42 are common features of the galaxy, but not as common as stars. Nebulae appear to be short-lived features, as matter is often attracted to other matter. All that stuff distributed in that tremendous volume of space is not as stable as it would be if it were all to be drawn together into a few big clumps. Particles pull together with its neighboring particles under the influence of various forces, including “static cling” or electrostatic attraction. This is the same force that makes tiny dust motes clump up into dust bunnies under your couch!

    Three dust bunnies and a pencil tip to provide a sense of scale. The dust bunnies are each about 3 cm across and 1.5 cm tall. Photo by Callan Bentley, 2019.
    Figure \(\PageIndex{2}\): Three dust bunnies under the couch: a household hassle, or a glimpse into the birth of the solar system?

    Now, electrostatic force is quite strong for pulling together small particles over small distances, but if you want to make big things like planets and stars out from a nebula, you’re going to need gravity to take over at some point. Gravity is a rather weak force. After all: every time you take a step, you’ve overcoming the gravitational pull of the entire Earth. But gravity can work very efficiently over distance, if the masses involved are large enough. So static cling was the initial organizer, until the “space dust bunnies” got large enough, then gravity was able to take over, attracting mass to mass. The net result is that the gajillions of tiny pieces of the nebula were drawn together, swirling into a denser and denser amalgamation. The nebula began to spin, flattening out from top to bottom, and flattening out into a spinning disk, something between a Frisbee and a fried egg in shape:

    An artist's conception of an oblique view of the protoplantary disk HL Tauri, using imagery originally gathered by the European Southern Observatory.
    Figure \(\PageIndex{3}\): An artist’s conception of an oblique view of a protoplanetary disk, using actual photoimagery of the HL Tauri disk, originally gathered by the European Southern Observatory.

    Once a star forms in the center, astronomers call the ring of debris around it a protoplanetary disk. Two important processes that helped organize the protoplanetary disk further were condensation and accretion.

    Chondrules in the Grassland meteorite, with a scale showing a scale in mm. Sources: Zimbres on Wikimedia, CC-BY license.
    Figure \(\PageIndex{4}\): Chondrules in a meteorite, with a scale in mm.

    Condensation is the process where gaseous matter sticks together to make liquid or solid matter. We have evidence of condensation in the form of small spherical objects with internal layering, kind of like “space hailstones.” These are chondrules, and they represent the earliest objects formed in our solar system. (Occasionally, we are lucky enough to find chondrules that have survived until the present day, entombed inside certain meteorites of the variety called chondrites.)

    Chondrules glommed onto other chondrules, and stuck themselves together into primordial “rocks,” building up larger and larger objects. Eventually, these objects got to be big enough to pull their mass into an round shape, and we would be justified to dub them “planetesimals.” Planetesimals gobbled up nearby asteroids, and smashed into other planetesimals, merging and growing through time through the process of accretion. The kinetic force of these collisions heated the rocky and metallic material of the planetesimals, and their temperature also went up as radioactive decay heated them from within. Once warm, denser material could sink to their middles, and lighter-weight elements and compounds rose up to their surface. So not only were they maturing into spheroidal shapes, but they were also differentiating internally, separating into layers organized by density.

    A cartoon model showing the evolution of our solar system from a pre-solar nebula, in four stages. In the first stage, a diffuse nebula is shown. In the second stage, most of the material has moved to the center, and it has started to rotate. Little flecks of solid material have accumulated. In stage 3, the flecks have grown into chunks, and there is much less diffuse fuzzy stuff in the background. The sun has formed as a discrete entity. In the fourth and final stage, the sun is a fat blob, surrounded by discrete planets. The space between them is mostly clear and clean.
    Figure \(\PageIndex{5}\): A cartoon model showing the evolution of our solar system from a pre-solar nebula.

    Meteorites that show metallic compositions represent “core” material from these planetesimals; core material that we would never get to glimpse had not their surrounding rocky material been blasted off. Iron meteorites such as the Canyon Diablo meteorite below (responsible for Arizona’s celebrated Meteor Crater) therefore are evidence of differentiation of planetesimals into layered bodies, followed by disaggregation: a polite way of saying they were later violently ripped apart by energetic collisions.

    If you were to somehow weigh the nebula before condensation and accretion, and again 4.6 billion years later, we’d find the mass to be the same. Rather than being dispersed in a diffuse cloud of uncountable atoms, the condensation and accretion of the nebula resulted in exactly the same amount of stuff, but organized into a smaller and smaller number of bigger and bigger objects. The biggest of these was the Sun, comprising about 99.86% of all the mass in the solar system. Four-fifths of the remaining 0.14% makes up the planet Jupiter. Saturn, Neptune, and Uranus are huge gas giants as well. The inner rocky planets (including Earth) make up a tiny, tiny fraction of the total mass of the whole solar system – but of course, just because they are relatively small, that doesn’t mean they are unimportant!

    The process of accretion continues into the present day, though at a slower pace than the earliest days of the solar system. One place you can observe this is in the asteroid belt, where there are certain asteroids that are basically nothing more than a big 3D pile of space rocks, held together under their own gravity. Consider the asteroid called Itokawa 25143, for instance:

    The asteroid 25143 Itokawa, imaged by the Japanese Space Agency (JAXA) during the Hayabusa mission. Labels and scale added by Callan Bentley.
    Figure \(\PageIndex{6}\): The asteroid 25143 Itokawa.

    Only about half a kilometer long, and only a few hundred meters wide, Itokawa doesn’t even have enough gravity to pull itself into a sphere. If you were to land on the surface of Itokawa and kick a soccer-ball-sized boulder, it would readily fly off into space, as the force of your kick would be much higher than the force of gravity causing it to stay put.

    Another example of accretion continuing to this day is meteorite impacts. Every time a chunk of rock in space intersects the Earth, its mass is added to that of the planet. In that instant, the solar system gets a little bit cleaner (fewer leftover bits rattling around) and the planet gets a little more massive. A spectacular example of this occurred in 1994 with Comet Shoemaker-Levy 9, a comet which had only been discovered the previous year. Jupiter’s immense gravity broke the comet into chunks, and then swallowed them up one after another. Astronomers on Earth watched with fascination as the comet chunks, some more than a kilometer across, slammed into Jupiter’s atmosphere at 60 km/second (~134,000 mph), creating a 23,700 \(^{\circ}\)C fireball and enormous impact scars that were as large as the entire Earth. These scars lasted for months.

    A photograph (through a telescope) showing a prominent red/brown concentric-ring shaped "scar" on Jupiter's atmosphere where Comet Shoemaker-Levy 9 impacted it.
    Figure \(\PageIndex{7}\): Accretion in action: scar from the July 1994 collision between a fragment of Comet Shoemaker-Levy 9 and the surface of the atmosphere of the planet Jupiter.

    This incredibly dramatic event perhaps raises the hair on our necks, seeing the violence and power of cosmic collisions. It’s a reminder that Earthlings are not safe from accretionary impacts even today – as the dinosaurs found out. For the purposes of our current discussion, though, bear in mind that the collision was really a merger between the masses of Comet Shoemaker-Levy 9 and the planet Jupiter, and after the dust settled, the solar system had one fewer object left off by itself, and Jupiter gained a bit more mass. This is the overall trend of the accretion of our solar system from the presolar nebula: under gravity’s influence, the available mass becomes more and more concentrated through time.

    Did I Get It? - Quiz

    Exercise \(\PageIndex{1}\)

    What feature is shown here, and when did it form?

    (Microscopic thin section, field of view about 5 mm, shown in plane-polarized light (PPL) and cross-polarized light (XPL).

    chondrule-small-300x225.gif

    a. This is an asteroid. It formed last week.

    b. This is a nebula. It formed in the aftermath of a old star's supernova explosion within a few million years of the Big Bang.

    c. This is a granite. It formed during the growth of the continental crust.

    d. This is a chondrule. One of the oldest objects known from our solar system, it formed during the earliest stages of condensation of the presolar nebula.

    Answer

    d. This is a chondrule. One of the oldest objects known from our solar system, it formed during the earliest stages of condensation of the presolar nebula.

    Exercise \(\PageIndex{2}\)

    What has happened to the amount of matter (e.g., the mass) of the solar system between its early nebula days and today?

    a. It has decreased. It weighs less now.

    b. It hasn't changed at all - merely been organized into a smaller number of bigger bits.

    c. It has increased. It weighs more now.

    Answer

    b. It hasn't changed at all - merely been organized into a smaller number of bigger bits.


    This page titled 16.2: Nebular theory is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Callan Bentley, Karen Layou, Russ Kohrs, Shelley Jaye, Matt Affolter, and Brian Ricketts (OpenGeology) via source content that was edited to the style and standards of the LibreTexts platform.