Skip to main content
Geosciences LibreTexts

8.4: Archean Eon

  • Page ID
  • The Archean Eon, which lasted from 4.0–2.5 billion years ago, is named after the Greek word for beginning. This eon represents the beginning of the rock record. Although there is current evidence that rocks and minerals existed during the Hadean Eon, the Archean has a much more robust rock and fossil record.

    Figure: Artist’s impression of the Archean.

    8.4.1: Late Heavy Bombardment

    Objects were chaotically flying around at the start of the solar system, building the planets and moons. There is evidence that after the planets formed, about 4.1–3.8 billion years ago, a second large spike of asteroid and comet impacted the Earth and Moon in an event called late heavy bombardment. Meteorites and comets in stable or semi-stable orbits became unstable and started impacting objects throughout the solar system. In addition, this event is called the lunar cataclysm because most of the Moons craters are from this event. During the late heavy bombardment, the Earth, Moon, and all planets in the solar system were pummeled by material from the asteroid and Kuiper belts. Evidence of this bombardment was found within samples collected from the Moon.

    The smooth plain is different than the cratered surrounding surface.
    Figure: 2015 image from NASA’s New Horizons probe of Pluto. The lack of impacts found on the Tombaugh Regio (the heart-shaped plain, lower right) has been inferred as being younger than the Late Heavy Bombardment and the surrounding surface due to its lack of impacts.

    It is universally accepted that the solar system experienced extensive asteroid and comet bombardment at its start; however, some other process must have caused the second increase in impacts hundreds of millions of years later. A leading theory blames gravitational resonance between Jupiter and Saturn for disturbing orbits within the asteroid and Kuiper belts [33] based on a similar process observed in the Eta Corvi star system.

    Figure: Simulation of before, during, and after the late heavy bombardment.

    8.4.2: Origin of the Continents

    Figure: The layers of the Earth. Physical layers include the lithosphere and asthenosphere; chemical layers are crust, mantle, and core.

    In order for plate tectonics to work as it does currently, it necessarily must have continents. However, the easiest way to create continental material is via assimilation and differentiation of existing continents (see Chapter 4). This chicken-and-egg quandary over how continents were made in the first place is not easily answered because of the great age of continental material and how much evidence has been lost during tectonics and erosion. While the timing and specific processes are still debated, volcanic action must have brought the first continental material to the Earth’s surface during the Hadean, 4.4 billion years ago [18]. This model does not solve the problem of continent formation since magmatic differentiation seems to need a thicker crust. Nevertheless, the continents formed by some incremental process during the early history of Earth. The best idea is that density differences allowed lighter felsic materials to float upward and heavier ultramafic materials and metallic iron to sink. These density differences led to the layering of the Earth, the layers that are now detected by seismic studies. Early protocontinents accumulated felsic materials as developing plate-tectonic processes brought lighter material from the mantle to the surface [36].

    Figure: Subduction of an oceanic plate beneath another oceanic plate, forming a trench and an island arc. Several island arcs might combine and eventually evolve into a continent.

    The first solid evidence of modern plate tectonics is found at the end of the Archean, indicating at least some continental lithosphere must have been in place. This evidence does not necessarily mark the starting point of plate tectonics; remnants of earlier tectonic activity could have been erased by the rock cycle.

    Figure: Geologic provinces of Earth. Cratons are pink and orange.

    The stable interiors of the current continents are called cartons and were mostly formed in the Archean Eon. A craton has two main parts: the shield, which is crystalline basement rock near the surface, and the platform made of sedimentary rocks covering the shield. Most cratons have remained relatively unchanged with most tectonic activity having occurred around cratons instead of within them. Whether they were created by plate tectonics or another process, Archean continents gave rise to the Proterozoic continents that now dominate our planet.

    It shows Zealandia
    Figure: The continent of Zealandia

    The general guideline as to what constitutes a continent and differentiates oceanic from the continental crust is under some debate. At passive margins, continental crust grades into the oceanic crust at passive margins, making a distinction difficult. Even island-arc and hot-spot material can seem more closely related to continental crust than oceanic. Continents usually have a craton in the middle with felsic igneous rocks. There is evidence that submerged masses like Zealandia, that includes present-day New Zealand, would be considered a continent [39]. Continental crust that does not contain a craton is called a continental fragment, such as the island of Madagascar off the east coast of Africa.

    8.4.3: First Life on Earth

    Life most likely started during the late Hadean or early Archean Eons. The earliest evidence of life is chemical signatures, microscopic filaments, and microbial mats. Carbon found in 4.1 billion-year-old zircon grains have a chemical signature suggesting an organic origin. Other evidence of early life is the 3.8–4.3 billion-year-old microscopic filaments from a hydrothermal vent deposit in Quebec, Canada. While the chemical and microscopic filaments evidence is not as robust as fossils, there is significant fossil evidence for life at 3.5 billion years ago. These first well-preserved fossils are photosynthetic microbial mats, called stromatolites, found in Australia [41].

    Rocks with a wrinkled texture, formed by microbial mats
    Figure: Fossils of microbial mats from Sweden

    Although the origin of life on Earth is unknown, hypotheses include a chemical origin in the early atmosphere and ocean, deep-sea hydrothermal vents, and delivery to Earth by comets or other objects. One hypothesis is that life arose from the chemical environment of the Earth’s early atmosphere and oceans, which was very different than today. The oxygen-free atmosphere produced a reducing environment with abundant methane, carbon dioxide, sulfur, and nitrogen compounds. This is what the atmosphere is like on other bodies in the solar system.

    Figure: Greenhouse gases were more common in Earth’s early atmosphere.

    In the famous Miller-Urey experiment, researchers simulated early Earth’s atmosphere and lightning within a sealed vessel. After igniting sparks within the vessel, they discovered the formation of amino acids, the fundamental building blocks of proteins [42]. In 1977, when scientists discovered an isolated ecosystem around hydrothermal vents on a deep-sea mid-ocean ridge (Chapter 4), it opened the door for another explanation of the origin of life. The hydrothermal vents have a unique ecosystem of critters with chemosynthesis as the foundation of the food chain instead of photosynthesis. The ecosystem is deriving its energy from hot chemical-rich waters pouring out of underground towers. This suggests that life could have started on the deep ocean floor and derived energy from the heat from the Earth’s interior via chemosynthesis. Scientists have since expanded the search for life to more unconventional places, like Jupiter’s icy moon Europa.

    Animation of the original Miller-Urey 1959 experiment that simulated the early atmosphere and created amino acids from simple elements and compounds.

    Another possibility is that life or its building blocks came to Earth from space, carried aboard comets or other objects. Amino acids, for example, have been found within comets and meteorites. This intriguing possibility also implies a high likelihood of life existing elsewhere in the cosmos.