Skip to main content
Geosciences LibreTexts

7.9.3: Ecological Consequences for Freshwater Wetlands in a Changing Climate

  • Page ID
    25903
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Freshwater wetlands may be altered by climate change in all geographic regions of the world (Junk et al. 2013). A changed climate will alter hydrology, and functionality may be impaired by increased temperatures, drought or flooding events, CO2 increases, and/or salinity intrusion (Junk et al. 2013). These changes will affect critical functions and ecosystem services such as carbon storage, biodiversity support, wildlife habitat and water quality (Junk et al. 2013). Negative impacts related to climate change will be compounded by synergies with other stressors, such as invasive species and land use change, thereby potentially increasing both the difficulties in managing and restoring wetlands, and the risk of endemic species extinctions (Erwin 2009).

    Despite these challenges, some freshwater wetlands may be relatively resilient to climate change (Baron et al. 2002; Middleton and Souter 2016) within certain boundaries of temperature, precipitation, water level, salinity intrusion, and storm activity (Poff et al. 2002; Bernstein et al. 2007). At the same time, salinity intrusion poses specific threats to coastal freshwater wetlands because many species in these ecosystems are intolerant of salinity (Keddy 2010). Also, these species often have lower levels of production if salinity levels become too high (Middleton 1999; Sutter et al. 2014; Middleton and Souter 2016). A recent review synthesizes the state of our knowledge on how salinization associated with climate change will impact these wetlands (Herbert et al. 2015).

    Climate change poses threats to non-coastal freshwater wetlands as well; hydrology is shifting as many local water regimes have become wetter or drier in recent decades (Fig. \(\PageIndex{1}\)) (Mallakpour and Villarini 2015). In particular, megadroughts predicted by climate models (Cook et al. 2015) may dry Midwestern and Southwestern wetlands in North America with severe consequences for both wetlands and society. Severe droughts could impair the ability of these wetlands to maintain services including water quality, water supply, flood control, storm protection, and direct harvests of fish, animals, and plants, ultimately with severe negative impacts on ecosystem function and biodiversity (Baron et al. 2002; Middleton and Souter 2016). In addition, reduced winter snowpack and earlier snowmelt are impacting northern freshwater wetlands by altering the timing and magnitude of stream flows (Lawler 2009). In northern areas with permafrost, vegetation structure completely changes after permafrost melts (Malhotra and Roulet 2015). In fact, climate change is already changing community composition, species distribution, phenology, physiology and invasive species presence (Lawler 2009).

    figure 3
    Figure \(\PageIndex{1}\): The magnitude and frequency of flood events in the Midwestern United States from 1962−2011. Triangles show trends of flooding at U.S.G.S. gage stations with trends (positive, negative, neutral; blue triangle, red triangle, and gray circle, respectively; from Mallakpour and Villarini 2015)

    Unfortunately, many of the world’s freshwater wetlands are already stressed by increased land-use pressure, so that additional hydrological alteration can contribute to an overall decrease in resilience to climate change (Baron 2002; Middleton and Souter 2016). Human alteration is commonplace throughout river corridors, challenging management as the impacts of upstream alterations accumulate along the waterway (See Fig. \(\PageIndex{2}\)). (DuBowy 2013; Tockner and Stanford 2002). As demands for river resources increase, such problems are expected to worsen (Baron et al. 2002). Flowing water is compromised by river re-engineering practices, even though moving water generally improves oxygenation and plant health (Middleton 1999). Also, upriver freshwater extraction in tidal freshwater wetlands coupled with sea level rise can cause the salinification of surface and ground water, with accompanying stress and even the collapse of tidal vegetation in the freshwater reaches of estuaries (Perry and Atkinson 2009; Middleton and Souter 2016).

    figure 4
    Figure \(\PageIndex{2}\): The hydrologic changes in the Mississippi River and tributaries for navigation and development include straightening, deepening, levee construction and damming. These engineering practices influence ecosystem processes across the floodplain and channel of this big river system (DuBowy 2013)

    Fortunately, emerging research suggests that vegetation collapse sometimes can be avoided by hydrologic remediation (Souter et al. 2010). Freshwater remediation can reduce salinity and revive freshwater forests stressed by salinity intrusion, if the vegetation is not fatally damaged (Middleton et al. 2015; Middleton and Souter 2016). Such techniques could become critical for maintaining future ecosystem health and services (Baron et al. 2002; Middleton and Souter 2016). To date, there is no report of long-term monitoring of the survival of vegetation following remediation, so any long-term benefits are untested (Middleton and Souter 2016). Managers may need to carefully monitor the effects of traditional techniques and adjust the timing and/or intensity of management actions accordingly (Jackson and Hobbs 2009; Middleton et al. 2017).

    One harbinger of ecosystem change is that the early life history stages of foundation species (species with a strong role in structuring communities) are increasingly unsuccessful at the hot or dry edges of their ranges, noting that juveniles are more sensitive to environmental extremes than adult plants (Jackson and Hobbs 2009). Without regeneration, vegetation enters a relict state (Williams et al. 1999). Worldwide examples of relict foundation species are growing, and such vegetation may be poised for abrupt decline if disturbance removes adult vegetation (Middleton et al. 2017). There are several indicators that some freshwater wetlands are poised for collapse at the edges of their ranges, and the loss of all but relict species is a key indicator of that problem (Middleton et al 2017). Thus, freshwater wetlands face a myriad of challenges in the face of climate change.

    References

    Baron JS, Poff NL, Angermeier PL, Dahm CN, Gleick PH, Hairston NG Jr, Jackson RB, Johnston CA, Richter BD, Steinman AD (2002) Meeting ecological and societal needs for freshwater. Ecological Applications 12:1247–1260

    Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O, Hare W, Huq S, Karoly D, Kattsov V, Kundzewicz Z, Liu J, Lohmann U, Manning M, Matsuno T, Menne B, Metz B, Mirza M, Nicholls N, Nurse L, Pachauri R, Palutikof J, Parry M, Qin D, Ravindranath N, Reisinger A, Ren J, Riahi K, Rosenzweig C, Rusticucci M, Schneider S, Sokona Y, Solomon S, Stott P, Stouffer R, Sugiyama T, Swart R, Tirpak D, Vogel C, Yoh G. (2007) Intergovernmental Panel on Climate Change. Fourth Assessment Report, Climate Change 2007: synthesis report. IPCC Secretariat, World Meteorological Organization, Geneva

    Cook BI, Ault TR, Smerdon JE (2015) Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science Advances 1:e1400082

    DuBowy PJ (2013) Mississippi River ecohydrology: Past, present and future. Ecohydrology and Hydrobiology 13:73–83

    Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17:71–84. https://doi.org/10.1007/s11273-008-9119-1

    Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardon M, Hopfensperger KN, Lamers LPM, Gell P (2015) A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6(10):1–43. https://doi.org/10.1890/ES14-00534.1

    Jackson ST, Hobbs RJ (2009) Ecological restoration in the light of ecological history. Science 325:567–569. https://doi.org/10.1126/science.1172977

    Junk WJ, An S, Finlayson CM, Gopal B, Kvet J, Mitchell A, Mitsch WJ, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences 75:151–167. https://doi.org/10.1007/s00027-012-0278-z

    Keddy PA (2010) Wetland ecology principles and conservation, 2nd edn. Cambridge University Press, NY, p 497

    Lawler JJ (2009) Climate change adaptation strategies for resource management and conservation planning. The Year in Ecology and Conservation Biology, 2009. Annals of the New York Academy of Sciences 1162:79–98. https://doi.org/10.1111/j.1749-6632.2009.04147.x

    Malhotra A, Roulet NT (2015) Environmental correlates of peatland carbon fluxes in a thawing landscape: Do transitional thaw stages matter? Biogeosciences 12(10):3119–3130

    Mallakpour I, Villarini G (2015) The changing nature of flooding across the central United States. Nature Climate Change 5:250–254

    Middleton BA (1999) Wetland restoration, flood pulsing and disturbance dynamics. John Wiley and Sons, New York

    Middleton BA, Johnson D, Roberts B (2015) Hydrologic remediation for the Deepwater Horizon Incident drove ancillary primary production increase in coastal swamps. Ecohydrology 8:838–850

    Middleton BA, Souter N (2016) Functional integrity of wetlands, hydrologic alteration and freshwater availability. Ecosystem Health and. Sustainability 2(1):e01200. https://doi.org/10.1002/ehs2.1200

    Middleton BA, Boudell J, Fisichelli N (2017) Using management to address vegetation stress related to land-use and climate change. Restoration Ecology 26:1–4

    Perry JE, Atkinson RB (2009) York River tidal marshes. Journal of Coastal Research 57:43–52

    Poff NL, Brinson MM, Day JW Jr (2002) Aquatic ecosystems and global climate change. Potential impacts on inland freshwater and coastal wetland ecosystems in the United States. Pew Charitable Trust, Philadelphia
    http://www.pewtrusts.org/~/media/legacy/uploadedfiles/wwwpewtrustsorg/reports/protecting_ocean_life/envclimateaquaticecosystemspdf.pdf

    Souter NJ, Cunningham S, Little S, Wallace T, McCarthy B, Henderson M (2010) Evaluation of a visual assessment method for tree condition of eucalypt floodplain forests. Ecological Management and Restoration 11:210–214

    Sutter LS, Perry JE, Chambers RM (2014) Tidal freshwater marsh plant responses to low level salinity increases. Wetlands 34:167–175

    Tockner K, Stanford JA (2002) Riverine flood plains: Present state and future trends. Environmental Conservation 29:308–330

    Williams K, Ewel KC, Stumpf RP, Putz FE, Workman TW (1999) Sea−level rise and coastal forest retreat on the west coast of Florida, USA. Ecology 80:2045–2063

    Excerpted from:

    Moomaw, W.R., Chmura, G.L., Davies, G.T. et al. Wetlands In a Changing Climate: Science, Policy and Management. Wetlands 38, 183–205 (2018). Accessed December 2023 https://doi.org/10.1007/s13157-018-1023-8 CC-BY


    7.9.3: Ecological Consequences for Freshwater Wetlands in a Changing Climate is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.