Skip to main content
Geosciences LibreTexts

7.9.2: Carbon Accumulation and GHG Emissions from Freshwater Wetlands (Including Permafrost) In a Changing Climate

  • Page ID
    25902
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Wetland conservation has important implications for atmospheric C cycles, since a substantial portion of the soil C pool is stored in wetlands. Northern high latitude and tropical peatlands store more than 600 PgC (Gorham 1991; Hugelius et al. 2014), which is among the largest reserves in the world (Köchy et al. 2015). This amount is more than two-thirds as much as is stored in the atmosphere and comparable to the amount stored in global forest biomass (Pan et al. 2011). Wetland conditions are critical for C accumulation and storage since decomposition in these systems is limited by a lack of oxygen due to water saturation (Brinson et al. 1981). Therefore, when plant productivity exceeds decomposition there is a net accumulation of soil C. This process eventually develops deep peat deposits, which may accumulate for thousands of years. In high latitudes of the Northern Hemisphere, the accumulation process is further intensified by the presence of permafrost, which can have contrasting effects on hydrology, leading to either wetland formation or loss (Sannel and Kuhry 2008). The negative climate feedback (i.e. net cooling effect) that results from increased plant productivity and the long-term C accumulation and storage by wetlands is, in part, offset by CH4 emissions from freshwater wetlands (Turetsky et al. 2014). Freshwater wetlands represent the largest natural source of CH4, releasing approximately 180 – 220 Pg CH4 yr-1 (Mikaloff Fletcher et al. 2004, Kirschke et al. 2013). However, wetlands that accumulate peat account for less than a quarter of all wetland CH4 emissions (Turetsky et al. 2014 and references therein).

    The influence of future climate on wetland soils C will depend upon the same factors that facilitated C accumulation in these systems: water saturated soils and minimal modification of wetlands through land-use change, and in the case of high latitude peat lands, low temperature. Globally, temperature, low oxygen (due to soil saturation), and the chemical and physical form of the organic matter, are the primary factors limiting decomposition in wetlands. Changes in precipitation and evapotranspiration patterns, which alter the water balance of wetland ecosystems, will substantially influence wetland C cycling. However, the magnitude, directionality, and seasonality of projected hydrologic changes are regionally variable (Collins et al. 2013), and therefore, the fate of soil C stored in wetlands will depend on local conditions. In contrast, changes in the global energy balance, usually manifested by an increase in temperature, are most likely to accelerate the decomposition rate of wetland organic C stored at the soil surface. Deeper C pools may be unaffected unless there are associated changes in hydrology (van Groenigen et al 2016). These potential losses of below ground C may also be partially offset by increased primary productivity.

    The greenhouse gas dynamics of permafrost regions differ in important ways from liquid water wetlands. The microbial metabolism of soil carbon is greatly reduced when the soils are frozen for long periods. Thawing changes the availability of oxygen and liquid water, and activates bacterial metabolism, which leads to a relatively abrupt increase in emissions of either or both carbon dioxide and methane. In addition, the low solubility of methane in water causes the accumulation of this gas in bubbles under the permafrost layer. Thawing releases these bubbles, which substantially contributes to this abrupt emission increase. In permafrost regions, increased temperature will have both direct and indirect effects on wetland C storage; permafrost thaw can dramatically affect hydrology in the Arctic, but the C consequences of that change are dependent upon landscape conditions (Olefeldt et al. 2016). Permafrost thaw can lead to wetland drainage because permafrost restricts vertical water flow. As the permafrost thaws to deeper soil layers or is completely thawed, the perched water table may be lowered, resulting in drier surface soils. Permafrost-mediated wetland drainage can lead to substantial C losses because of higher rates of aerobic bacterial metabolism. However, permafrost thaw can also result in ground collapse that can cause wetland formation and substantially increase CH4 emissions from permafrost ecosystems (Christensen et al. 2004; Natali et al. 2015; Schuur et al. 2015).

    The effects of climate changes on wetland C storage will be determined largely by the extent to which the wetlands have been modified through land-use change (Petrescu. et al 2015). Altering wetlands can increase the vulnerability of the organic C pool by weakening the self-regulating feedbacks that exist in many peatland systems (Frolking et al. 2010). Land use change that affects wetland hydrology has had substantial impacts on wetland structure and function. Draining wetlands decreases CO2 uptake and increases rates of microbial decomposition and CO2 release (Mietten et al 2017). Soil C is also lost by peat extraction, drainage and other disturbance (Laıne et al. 2014; Evans et al. 2015; Strain, et al 2017). The hydrologic changes can be so large that they result in massive losses of C to the atmosphere, such as occurred during the fires in tropical peatlands in Southeast Asia (Page et al. 2002).

    While the drainage of natural wetlands for conversion to agricultural land results in net losses of soil organic C, radiative forcing from wetland conversion depends on relative changes in the direction and magnitude of two major GHGs: CO2 and CH4 (Petrescu et al. 2015). Despite a decline in CH4 emissions following wetland drainage, wetland conversion to cropland results in a significant net increase in atmospheric radiative forcing (heat trapping) (Petrescu et al. 2015). On the other hand, land use changes that cause flooding and creation of wetlands can alter C pools through the saturation and burial of organic C (Knoll et al. 2014). Despite the potential for C sequestration, reservoir formation leads to increased GHG emissions, primarily because of CH4 emissions from ponded water and highly fluctuating water levels in reservoirs compared to natural lakes (Deemer et al. 2016; Hayes et al. 2017).

    Increased atmospheric CO2 is projected to almost double current freshwater wetland CH4 emissions, primarily due to warmer temperatures as well as enhanced precipitation (Shindell et al. 2004). The increase in CH4 emissions under high CO2 concentrations will primarily result from increased emission rates from tropical wetlands and from wetland expansion in northern high latitudes (Shindell et al. 2004; van Groenigen et al. 2011). The response of wetlands to future climate scenarios will also vary across wetland systems. For example, Wu and Roulet (2014) suggest that ombrotrophic (rain-fed) peatlands will maintain structure and function, but fen-like systems that rely on terrestrial water inputs are much more vulnerable to climate change. Land use and climate-mediated changes in CH4 emissions from freshwater wetlands can produce a large increase in radiative forcing (heat trapping) in decades to several centuries, but in the long-term (century-millennia), C sequestration by wetlands represents, at present, a net cooling effect (Frolking and Roulet 2007; Neubauer and Megonigal 2015). However, land use, land use change, and fire can cause abrupt changes in soil C storage in wetlands, switching these long-term C sinks to sources of C to the atmosphere (Joosten et al. 2016)

    References

    Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition and consumer activity in freshwater wetlands. Annual Review of Ecology and Systematics 12:123–161

    Christensen TR, Johansson T, Åkerman J, Mastepanov M, Malmer N, Friborg T, Crill P, Svensson BH (2004) Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophysical Research Letters 31:L04501. https://doi.org/10.1029/2003GL018680

    Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: Projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Doschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1029–1136. https://doi.org/10.1017/CBO9781107415324.024

    Deemer BR, Harrison JA, Li S, Beauliey JJ, DeLSontro T, Barros N, Bezerra-Neto JF, Powers SM, Dos Santos MA, Vonk JA (2016) Greenhouse gas emissions from reservoir water surfaces: A new global synthesis. BioScience 66:949–964. https://doi.org/10.1093/biosci/biw117

    Evans CD, Renou-Wilson F, Strack M (2015) Inclusion of waterborne carbon in IPCC greenhouse gas emissions accounting for drained and re-wetted peatlands: Development of the methodology and future research needs. Aquatic Sci. https://doi.org/10.1007/s00027-015-0447-y

    Frolking S, Roulet NT (2007) Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Global Change Biology 13(5):1079–1088

    Gorham E (1991) Northern peatlands: Role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1(2):182–195

    Hayes NM, Deemer BR, Corman JR, Razavi NR, Strock KE (2017) Key differences between lakes and reservoirs modify climate signals: A case for a new conceptual model. Limnology and Oceanography Letters 2(2):47–62

    Hugelius G, Strauss J, Zubrzycki S, Harden JW, Schuur EAG, Ping CL, Schirrmeister L, Grosse G, Michaelson GJ, Koven CD, O'Donnell JA, Elberling B, Mishra U, Camill P, Yu Z, Palmtag J Kuhry P (2014) Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11:6573–6593. https://doi.org/10.5194/bg-11-6573-2014

    Joosten H, Couwenberg J, von Unger M (2016) International carbon policies as a new driver for peatland restoration. In: Bonn A, Allot T, Evans M, Joosten H, Stoneman R (eds) Peatland restoration and ecosystem services: Science, policy and practice. Cambridge University Press/British Ecological Society, Cambridge, pp 291–313

    Kirschke S, Bousquet P, Ciais P, Saunois M, Canadell JG, Dlugokencky EJ, Bergamaschi P, Bergmann D, Blake DR, Bruhwiler L, Cameron-Smith P, Castaldi S, Chevallier F, Feng L, Fraser A, Heimann M, Hodson EL, Houweling S, Josse B, Fraser PJ, Krummel PB, Lamarque J, Langenfelds RL, Le Quéré C, Naik V, O'Doherty S, Palmer PI, Pison I, Plummer D, Poulter B, Prinn RG, Rigby M, Ringeval B, Santini M, Schmidt M, Shindell DT, Simpson IJ, Spahni R, Steele LP, Strode SA, Sudo K, Szopa S, van der Werf GR, Voulgarakis A, van Weele M, Weiss RF, Williams JE, Zeng G (2013) Three decades of global methane sources and sinks. Nature Geoscience. 6:813–823. https://doi.org/10.1038/ngeo1955

    Knoll LB, Vanni MJ, Renwick WJ, Kollie S (2014) Burial rates and stoichiometry of sedimentary carbon, nitrogen and phosphorus in Midwestern US reservoirs. Freshwater Biology 58(11):2342–2353. https://doi.org/10.1111/fwb.12438

    Köchy M, Hiederer R, Freibauer A (2015) Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. SOIL 1:351–365. https://doi.org/10.5194/soil-1-351-2015

    Laıne A, Nakamura H, Nishii K, Miyasaka T (2014) A diagnostic study of future evaporation changes projected in CMIP5 climate models. Clim Dyn 42:2745–2761. https://doi.org/10.1007/s00382-014-2087-7

    Mietten et al 2017

    Mikaloff Fletcher SE, Tans PP, Bruhwiler LM, Miller JB, Heimann M (2004) CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 2. Inverse modeling of CH4 fluxes from geographical regions. Global Biogeochemical Cycles 18, GB4005. https://doi.org/10.1029/2004GB002224

    Natali SM, Schuur EAG, Mauritz M, Schade JD, Celis G, Crummer KG, Johnston C, Krapek J, Pegoraro E, Salmon VG, Webb EE (2015) Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J Geophys Res Biogeosci 120:525–537. https://doi.org/10.1002/2014JG002872

    Neubauer SC, Megonigal JP (2015) Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18:1000–1013. https://doi.org/10.1007/s10021-015-9879-4

    Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993

    Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65. https://doi.org/10.1038/nature01131

    Petrescu AL, Tuovinen J-P, Baldocchi DD, Desai AR, Roulet NT, Vesala T, Dolman AJ, Oechel WC, Marcolla B, Friborg T, Rinne J, Matthes JH, Merbold L, Meijide A, Kiely G, Sottocornola M, Sachs T, Zona D, Varlagin A, Lai DY-F, Veenendaal E, Parmentier F-JW, Skiba U, Lund M, Hensen A, van Huissteden J, Flanagan LB, Shurpali NJ, Grünwald N, Humphreys ER, Jackowicz-Korczyński M, Aurela MA, Laurila T, Grüning C, Corradi CAR, Schrier-Uijl AP, Christensen TR, Tamstorf MP, Mastepanov M, Martikainen PJ, Verma S, Bernhofer BC, Cescatti A (2015) The uncertain climate footprint of wetlands under human pressure. PNAS 112(15):4594–4599. https://doi.org/10.1073/pnas.1416267112

    Sannel ABK, Kuhry P (2008) Radiocarbon dating of peat profiles from the subarctic ecoclimatic region, west-central Canada. PANGAEA. https://doi.org/10.1594/PANGEA.786457

    Schuur EAG, McGuire AD, Grosse G, Harden J, Hayes DJ, Hugelius H, Koven CD, Kuhry P, Lawrence DM, Natali SM, Olefeldt D, Romanovsky VE, Schädel C, Turetsky M, Treat C, Vonk J (2015) Climate change and the permafrost carbon feedback. Nature 520:171–179. https://doi.org/10.1038/nature1433

    Shindell DT, Walter BP, Faluvegi G (2004) Impacts of climate change on methane emissions from wetlands. Geophysical Research Letters 31(21):L21202

    Strain MA, van Belzen J, Comandini P, Wong J, Bouma TJ, Airoldi L (2017) The role of changing climate in driving the shift from perennial grasses to annual succulents in a Mediterranean saltmarsh. Journal of Ecology 105:13741385

    Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila E-S, Waddington JM, White JR, Wickland KP, Wilmking M (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology 20:2183–2197. https://doi.org/10.1111/gcb.12580

    van Groenigen KJ, Osenberg CW, Hungate BA (2011) Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475:214–216

    Wu J, Roulet NT (2014) Climate change reduces the capacity of northern peatlands to absorb the atmospheric carbon dioxide: The different responses of bogs and fens. Global Biogeochem Cycles 28:1005–1024. https://doi.org/10.1002/2014GB004845

    Excerpted from:

    Moomaw, W.R., Chmura, G.L., Davies, G.T. et al. Wetlands In a Changing Climate: Science, Policy and Management. Wetlands 38, 183–205 (2018). Accessed December 2023 https://doi.org/10.1007/s13157-018-1023-8 CC-BY


    7.9.2: Carbon Accumulation and GHG Emissions from Freshwater Wetlands (Including Permafrost) In a Changing Climate is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?