7.9.1: Introduction
- Page ID
- 25901
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Wetlands In a Changing Climate: The Science
The United Nations Framework Convention on Climate Change calls for the “stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system” (UNFCCC 1992). The Paris Climate Agreement in 2015 (UNFCCC 2017) established a goal of keeping global average temperature increase substantially less than 2oC above the preindustrial value, and making every attempt to keep it below 1.5oC.
In order to have a two in three probability of keeping global average temperature from rising by more than 2°C, it is essential to have “negative emissions" of GHGs; in other words, meeting the goal of the Paris Climate Agreement requires active removal and sequestration of atmospheric C (Sanderson et al. 2016). Sequestration is used here to refer to the photosynthetic removal of CO2 from the atmosphere and its conversion into cellulose and other carbon compounds in plants, and its conversion from decaying plants into soil organic matter. Ricke and Caldeira (2014) have shown that peak warming occurs within about one decade after a pulse of CO2 is added to the atmosphere. Hence the benefits of avoided CO2 emissions will be manifested within the lifetimes of people who acted to avoid those emissions. Solomon et al. (2009) have shown that after peak warming is reached, effects will persist for 1000 years. IPCC estimates that depending upon the scenario, “about 15 to 40% of CO2 emitted by 2100 will remain in the atmosphere longer than 1000 years” (Ciais et al. 2013) affecting 40 generations. Hence avoiding emissions of GHGs to the atmosphere is recommended to be a prime consideration that benefits both present and future generations.
For most types of wetlands, the bulk of sequestered carbon is in the soils rather than in the plant communities. Draining these wetlands to convert them to agriculture as has been done in many countries and regions including Indonesia, Malaysia, Russia, New Zealand, Florida Everglades and in Northern Europe, allows soil organic matter to be oxidized and release CO2 into the atmosphere. When mangroves are removed for coastal development and for aquaculture, or forested wetlands are harvested, additional carbon is released from soils and harvest residues. In the Southeast United States, a major wood pellet fuel industry has developed where the carbon in the wood is released as CO2 immediately upon combustion. The use of wood pellets to replace coal for electricity, on the mistaken assumption that it is carbon neutral, is expected to grow substantially by 2050 (IEA 2017), further degrading forested wetlands while adding large amounts of CO2 to the atmosphere.
CO2, added to the atmosphere by human activity, is the primary GHG responsible for climate change, followed by CH4 and N2O (Myhre et al 2014). These gases move among the natural reservoirs of terrestrial and marine plants, soils, oceans and the atmosphere. Human activity has reduced the size and capacity of these reservoirs while increasing GHG emissions (Ciais et al. 2013). Altering albedo (solar reflectivity from the earth’s surfaces) from land use change can increase or decrease global warming. Climate forcing (heat trapping) from black C (particulate matter from fossil fuel and biofuels combustion (Bond et al. 2013) is a significant contributor to global warming.
The average annual anthropogenic CO2 emissions for the period 2006-2015 are estimated to be 10.3 PgCy-1 (Petagrams C per year or 1015 grams C per year) with 9.3±0.5 PgCy-1 from fossil fuels and industrial processes and 1.0±0.5 PgCy-1 from land use change (Fig. \(\PageIndex{1}\), Le Quéré et al. 2016). The total CO2 emissions from fossil fuels and industrial processes between 1750 and 2011 are estimated to be 375±30 PgC, and the total amount from land use change is estimated to be 180±80 PgC. Therefore, nearly one-third of CO2 added to the atmosphere from human activity has come from deforestation and oxidation of disturbed soil organic matter (Ciais et al. 2013). By November 2017, CO2 in the atmosphere had increased to 865 PgC or 406 ppm (NOAA 2018).

The net annual increase of CO2 in the atmosphere each year is 4.5±0.5 PgCy-1 or slightly less than half of annual emissions, and concentrations have increased by over 40% above preindustrial levels. The biosphere has been the major means for removing and sequestering atmospheric CO2 for over 300 million years, but its potential to be a major resource for addressing climate change has been underappreciated in current policy discussions. Each year, 2.6±0.5 PgC equal to about 25% of annual emissions is removed by the ocean’s phytoplankton or is dissolved in the ocean’s waters. The difference between total emissions to the atmosphere and net removals by the oceans requires that an additional amount of CO2 equivalent to 3.1±0.9 PgCy-1 would need to be removed by terrestrial ecosystems to balance the carbon flows. This is nearly 30% of annual anthropogenic emissions from all sources. This analysis only reports estimates of the aggregate removal of CO2 by the terrestrial biosphere (all plants and soils), and does not explicitly consider the specific role of wetlands as either a source or a sink (Fig. \(\PageIndex{1}\), Le Quéré et al. 2016).
CH4 has a 100-year Global Warming Potential more than 28 times that of CO2 (Myhre et al. 2013). It is estimated that between 1750 and 2011 human activity has increased atmospheric CH4 by a factor of 2.5 from 1984 to 4954 Tg CH4 y-1 (722 ppb to1803 ppb) (1 Teragram CH4 is 1012 grams CH4) (Ciais et al. 2013). Currently the major sources of emissions arise from fossil fuel usage (85-105 Tg CH4 y-1), ruminant livestock (87-94 Tg CH4 y-1), landfills and waste (67-90 Tg CH4 y-1), and rice production (33-40 Tg CH4 y-1). Average annual anthropogenic emissions of CH4 from all these sources between 2000 and 2009 total between 272-329 Tg CH4 y-1 CH4 is removed from the atmosphere at a rate of 492-785 Tg CH4 y-1 mostly by atmospheric chemistry with small contributions from soil oxidation (Fig. \(\PageIndex{2}\)) (Ciais et al. 2013). CH4 emissions from wetlands are between 177 and 284 Tg CH4 y-1, with an additional 8-73 Tg CH4 y-1 emitted from freshwater sources.

Nitrous oxide (N2O) has a radiative forcing ~300 times that of CO2. It is a byproduct of both nitrification (under aerobic conditions) and denitrification (under anaerobic conditions), and thus can be produced in wetland soils (Megonigal et al. 2004). However, freshwater and saltwater wetland soils are a source of N2O only if they receive excessive levels of reactive nitrogen – otherwise they may be a sink for this potent GHG (e.g. Auget et al 2014, Chmura et al. 2016).
While natural solutions have focused on the role of forests to remove and sequester CO2, there is substantially more C sequestered in soils than in vegetation. The range of estimates for carbon sequestered in vegetation is 450-650 PgC, while the estimate for C stored in soils is 1500-2400 PgC with an additional 1700 PgC estimated to be in permafrost (Ciais et al. 2013). The large amount of carbon sequestered in wetlands is discussed in subsequent sections. As soils warm, and as permafrost thaws, these soils release their stored C as CO2 or CH4 resulting from microbial decomposition of soil organic carbon (SOC). These feedback emissions trap additional heat and warm the planet further. A first priority is to avoid disturbing wetlands and keep temperatures from rising as much as possible. As the subsequent sections illustrate, wetlands can play a significant role in addressing climate change by sequestering C, and by providing climate resiliency and adaptation while providing additional ecosystem services.
To limit excessive warming, it is necessary to stabilize CO2, CH4, N2O and other GHG concentrations in the atmosphere at an appropriate level, by decreasing emission rates and increasing removal rates. There are three basic strategies for accomplishing this goal.
- Reduce the addition of GHGs into the atmosphere from fossil fuels, biofuels, industry, agriculture and other sources to near zero.
- Prevent the climate and land-use mediated release of additional GHGs (CO2, CH4, N2O) from wetlands, including wetlands underlain by permafrost, from deforestation and forest degradation, and from all soils including degraded grassland and agricultural soils.
- Increase the capacity of natural systems including wetlands to actively remove CO2 from the atmosphere and sequester the C for the long-term.
References
Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research – Atmospheres 118:2169–8996. https://doi.org/10.1002/jgrd.50171
Chmura GL, Kellman L, van Ardenne L, Guntenspergen GR (2016) Greenhouse gas fluxes from salt marshes exposed to chronic nutrient enrichment. PLOS One 11(2):e0149937. https://doi.org/10.1371/journal.pone.0149937
Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles, Chapter 6. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
IEA (2017) Technology Roadmap:Delivering Siustainable Bioenergy. International Energy Agency https://www.iea.org/.../IEA_Bioenergy_Roadmap_FoldOut_2ndEdition_WEB.pdf
Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, Keeling RF, Alin S, Andrews OD, Anthoni P, Barbero L, Bopp L, Chevallier F, Chini LP, Ciais P, Currie K, Delire C, Doney SC, Friedlingstein P, Gkritzalis T, Harris I, Hauck J, Haverd V, Hoppema M, Klein Goldewijk K, Jain AK, Kato E, Körtzinger A, Landschützer P, Lefévre N, Lenton A, Lienert S, Lombardozzi D, Melton JR, Metzl N, Millero F, Monteiro PMS, Munro DR, Nabel JEMS, Nakaoka S, O'Brien K, Olsen A, Omar AM, Ono T, Pierrot D, Poulter B, Rödenbeck C, Salisbury J, Schuster U, Schwinger J, Séférian R, Skjelvan I, Stocker BD, Sutton AJ, Takahashi T, Tian H, Tilbrook B, van der Laan-Luijkx IT, van der Werf GR, Viovy N, Walker AP, Wiltshire A, Zaehle S (2016) Global carbon budget 2016. Earth System Science Data 8:605–649. https://doi.org/10.5194/essd-8-605-2016 http://www.earth-syst-sci-data.net/8/605/2016/essd-8-605-2016.pdf. Accessed 1 Sept 2017
Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: Linkages to trace gases and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry. Elsevier-Pergamon, Oxford, pp 317–424
Myhre G, Shindell D, Breon FM, Collins W, Fugelestvedt J, Huang J, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: The physical science basis. Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University, Cambridge
NOAA 2018 National Oceanic and Atmospheric Administration Earth Monitoring and Research Laboratory Global Monitoring Division Trends in atmospheric carbon dioxide Recent global monthly mean CO2 https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html Accessed 26 Feb 2018
Ricke KL, Caldeira K (2014) Maximum warming occurs about one decade after a carbon dioxide emission. Environmental Research Letters 9:124002. https://doi.org/10.1088/1748-9326/9/12/124002
Sanderson BM, O’Neill BC, Tebaldi C (2016) What would it take to achieve the Paris temperature targets? Geophysical Research Letters 43:7133–7142. https://doi.org/10.1002/2016GL069563Return to ref 2016 in article
Solomon S, Plattnerb G-K, Knuttic R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. PNAS 106(6):61704–61709
UNFCCC (1992) United Nations Framework Convention on Climate Change. United Nations. 1992. FCCC/INFORMAL/84. GE.05-62220 (E) 200705 http://unfccc.int/essential_background/convention/items/6036.php Accessed 15 Oct 2017
UNFCCC (2017) United Nations Framework Convention on Climate Change, Paris Agreement-Status of Ratification http://unfccc.int/paris_agreement/items/9444.php Accessed 15 Oct 2017
Excerpted from:
Moomaw, W.R., Chmura, G.L., Davies, G.T. et al. Wetlands In a Changing Climate: Science, Policy and Management. Wetlands 38, 183–205 (2018). Accessed December 2023 https://doi.org/10.1007/s13157-018-1023-8 CC-BY