Skip to main content
Geosciences LibreTexts

7.4: Organic matter storage in wetlands

  • Page ID
    19311
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Organic Matter Decomposition

    The organic matter generated by plants can be mineralized or accumulate in the soil matrix as sequestered organic carbon and other elements (Elsey-Quirk & Cornwell, 2022). Slow cycling of organic resources may indicate inherent resistance to enzymatic attack but may also be due to environmental factors, e.g., moisture, pH, temperature, particle size, and nutrient and oxygen availability (Li et al., 2022). Natural polymers (e.g., lignin, cellulose, hemicellulose, pectin) can bind to inorganic ions, clay, or other organic residues that protect these materials from degradation. Plant detritus can also be naturally enclosed to other molecules, e.g., cellulose is usually tightly associated with lignin, which limits cellulase access.

    As oxygen-dependent peroxidases and dioxygenases primarily degrade lignin, lignified cellulose is not readily decomposed in anaerobic environments. Other oxidants, such as nitrate, metal oxides or sulfate (e.g., Equations 1 and 2, 4, 5, and 8, respectively) do not seem to promote anaerobic degradation of these resources, which leads to lignocellulose accumulation in water-saturated soils and sediments, as bogs (Kirk, 2004).

    The storage of organic matter in soils and sediments constitutes an essential reservoir of carbon in the biosphere (Fenchel, et al., 2012). Storage is derived from balancing detritus input and mineralization (Six & Jastrow, 2002; Kirk, 2004). Element turnover is often quantified as mean residence time (MRT) or half-life (t½). The MRT of an element is defined as: (i) the average time the element resides in the medium at a steady state or (ii) the average time required to replenish the contents of the element at a steady state completely. The half-life of soil organic matter (Soil OM) is the time required for decomposing 50% of the currently existing stock.

    The typical model used to describe the dynamic behavior or turnover of the Soil OM is the first order model, which assumes a constant (zero-order) input with a proportional (constant) mass loss per unit of time. For Soil OM, the MRT = 1⁄k; where k = coefficient of mass loss of organic matter (t-1); Six & Jastrow (2002). Depending on latitude, humidity, management, soil type and composition and method used for evaluation, the MRT of Soil OM ranges from tens to thousands of years (Stevenson, 1994; Six & Jastrow, 2002; Torn et al., 2009).

    Evidence suggests that the persistence of organic carbon oxidation in the environment (soil and sediment) is determined by the interaction between substrates, microbial communities, and abiotic conditions. Therefore, organic matter turnover must be seen as dependent on microbial ecology and the state of a specific environment. Varying degrees of structural organization, microbial ability, and resource constraints within a given environment (soil aggregate, soil horizon) make it likely that identical organic compounds can be recycled at different rates due to variations in driving force (i.e., controlling environmental variables). Soil organic matter can be classified as a reservoir of reduced carbon in different states (Kleber, 2010). This categorization leads to observing the structural heterogeneity of the Soil OM and organic detritus. On a carbon basis, it is possible to distinguish that decomposing resources are formed by labile organic carbon (LC), soluble organic carbon (which will be released in dissolved form; DOC) and refractory particulate organic carbon (POCR; comprising basically of structural compounds); Bianchini Júnior & Cunha-Santino (2011)

    Inputs and Exports of Organic Matter

    Organic matter enters wetlands from various sources (i.e., point and diffuse) and in different ways (e.g., functions: impulse, step, linear, exponential, and periodic). The atmospheric sources (precipitation and dry deposition) that enter the air-water interface are partially dependent on the surface size of the aquatic environment and the amount of rainfall. In wetlands, detritus additions are naturally (and periodically) linked to: (i) the seasonality of the climate; (ii) GHG emissions (Bloom et al., 2012) and (iii) hydrological dynamics (Baker et al., 2009; Gilvear & Bradley, 2009; Grootjans & Van Diggelen, 2009).

    Seasonal additions of detritus tend to be more evident in temperate than in tropical environments, where seasonal temperature variations are less intense (Gonçalves Junior et al., 2014). Hydrological dynamics (e.g., variations in aquifer height, fluviometric variations, runoff ), which define the frequency and duration of floods, are an important source of allochthonous detritus (Barker & Maltby, 2009; Dise, 2009). Detritus enters a wetland from various sources and in several different ways. Sources of adduction related to the hydrological cycle, such as mass transported by flow or precipitation can often be characterized by periodic functions. The general pattern of high spring/summer runoff, with the relatively low and constant flow for other seasons, is repeated in a very predictable way.

    The origin of the detritus (autochthonous or allochthonous) can also interfere with cycling rates, with allochthonous resources being normally more inaccessible since potentially labile fractions have already been consumed, remaining detritus refractory fractions (Thurman, 1985; Gimenes et al., 2010). In wetlands, hydrology alters many variables related to detritus cycling, e.g., humidity depends on the flood regime, running water carries oxygen and nutrients, while in stagnant water, oxygen is quickly depleted, and nutrients are transformed into less available forms. Hydrological changes induced by climatic and anthropogenic disturbances can also define the rates and predominant composition of GHG emissions; for example, drainage lowers the water table and raises the oxygen content of the soil, increasing \(CO_2\) emissions. In temperate wetlands, the highest emissions were found where the water level remained close to the soil surface, suggesting that mainly litter and not burial organic matter contributes to \(CH_4\) emission (Wang et al., 2021). \(CH_4\) emissions from drained wetland soils are generally negligible because soil carbon is preferentially oxidized to \(CO_2\) (Hiraishi et al., 2014).

    Three different reactions generate \(CH_4\) under strictly reductive conditions (Boon, 2006). The first uses \(CO_2\), acetate (HCOO-), or carbon monoxide (CO) to produce \(CH_4\) (Equation \(\PageIndex{1}\)). In the second reaction, \(CH_4\) can be produced by the reduction of the methyl group of methyl compounds, such as methanol (Equation \(\PageIndex{2}\)). In the third reaction, \(CH_4\) is produced by the breakdown of acetate into methane and carbon dioxide (Equation \(\PageIndex{3}\)).

    \[\begin{array}{c}\mathrm{CO}_2+4 \mathrm{H}_2 \rightarrow \mathrm{CH}_4+2 \mathrm{H}_2 \mathrm{O} \\ +\operatorname{Energy}\left(\Delta \mathrm{G}_0{ }_0=-31.3 \mathrm{kcal} \mathrm{mol}^{-1}\right) \end{array}\]

    \[\begin{array}{c}4 \mathrm{CH}_3 \mathrm{OH} \rightarrow 3 \mathrm{CH}_4+\mathrm{CO}_2+2 \mathrm{H}_2 \mathrm{O} \\ + \text { Energy }\left(\Delta \mathrm{G}_0{ }_0=-76.2 \mathrm{kcal} \mathrm{mol}^{-1}\right) \end{array}\]

    \[\begin{array}{c} 4 \mathrm{CH}_3 \mathrm{COO}^{-}+\mathrm{H}_2 \mathrm{O} \rightarrow 3 \mathrm{CH}_4+\mathrm{HCO}_3^{-} \\ + \text {Energy }\left(\Delta \mathrm{G}_0{ }_0=-7.4 \mathrm{kcal} \mathrm{mol}^{-1}\right)\end{array}\]

    Anaerobic mineralization bioassays indicated that \(CO_2\) is the main product, instead of \(CH_4\) (Romeiro & Bianchini Júnior, 2006; Cunha-Santino & Bianchini Júnior, 2013; Bianchini Júnior & Cunha-Santino, 2016). The controlling factors of \(CH_4\) production are: (i) availability of electron acceptors (Segers, 1998); (ii) quantity and quality of the organic matter supply (Bianchini Júnior et al., 2010); (iii) temperature (Romeiro & Bianchini Júnior, 2008); (iv) pH (Kiene, 1991; Cunha-Santino et al., 2006; Bloom et al., 2012); (v) coenzymes and prosthetic groups (Schlegel, 1997) and (vi) micronutrients (Banik et al., 1996; Basiliko & Yavitt, 2001). Interactions between these abiotic factors that influence metabolic pathways in generating of specific intermediate products can influence \(CH_4\) production (Bergman et al., 1999). The intermediate compounds (e.g., methanol, propanol, formic acid, butyric acid) and acetate (Equation 34) is the main substrate for methanogenesis (Boone, 1991; Conrad, 1999).

    The physical and biotic structure and resulting metabolism of a wetland ecosystem are tightly coupled to hydrological and chemical loads from the watershed (Wetzel, 2006). The importance of hydrology for the export of organic carbon is evident; in general, higher export rates are expected from wetlands that are open to water flow. Riparian wetlands provide large amounts of organic detritus to streams, including coarse detritus. It is evidence that watersheds that drain wetlands export more organic material but maintain more nutrients than watersheds that have no wetlands (Mitsch & Gosselink, 2015). In wetlands, the export of organic matter is predominantly associated with dissolved organic matter derived from relatively recalcitrant chemical compounds, often associated with the origin of lignin and cellulose structural tissues of higher plants and various products of bacterial degradation (Wetzel, 2006).

    References

    Baker, C., Thompson, J.R., & Simpson, M., 2009. Hydrological dynamics I: surface waters, flood and sediment dynamics. In: Barker, T., & Maltby, E., eds. The wetlands handbook. Chichester: Wiley-Blackwell, 120-168. http://dx.doi. org/10.1002/9781444315813.ch6.

    Banik, S., Sen, M., & Sen, S.P., 1996. Effects of inorganic fertilizers and micronutrients on methane production from wetland rice (Oryza sativa L.). Biol. Fertil. Soils 21(4), 319-322. http://dx.doi.org/10.1007/BF00334910.

    Barker, T., & Maltby, E., 2009. Introduction – The dynamics of wetlands. In: Barker, T., & Maltby, E., eds. The wetlands handbook. Chichester: Wiley-Blackwell, 113-119. http://dx.doi.org/10.1002/9781444315813.ch5.

    Basiliko, N., & Yavitt, J.B., 2001. Influence of Ni, Co, Fe, and Na additions on methane production in Sphagnum-dominated northern American peatlands. Biogeochemistry 52(2), 133-153. http://dx.doi. org/10.1023/A:1006461803585

    Bergman, I., Lundberg, P., & Nilsson, M., 1999. Microbial carbon mineralization in an acid surface peat: effects of environmental factors in laboratory incubations. Soil Biol. Biochem. 31(13), 1867-1877. http://dx.doi.org/10.1016/S0038-0717(99)00117-0.

    Bianchini Júnior, I., Cunha-Santino, M.B., Romeiro, F., & Bitar, A.L., 2010. Emissions of methane and carbon dioxide during anaerobic decomposition of aquatic macrophytes from a tropical lagoon (São Paulo, Brazil). Acta Limnol. Bras. 22(2), 157-164. http://dx.doi.org/10.1590/S2179- 975X2010000200005.

    Bianchini Júnior, I., & Cunha-Santino, M.B., 2011. Model parameterization for aerobic decomposition of plant resources drowned during man-made lakes formation. Ecol. Modell. 222(7), 1263-1271. http://dx.doi.org/10.1016/j.ecolmodel.2011.01.019.

    Bianchini Júnior, I., & Cunha-Santino, M.B., 2016. \(CH_4\) and \(CO_2\) from decomposition of Salvinia auriculata Aublet, a macrophyte with high invasive potential. Wetlands 36(3), 557-564. http://dx.doi. org/10.1007/s13157-016-0765-4.

    Bloom, A.A., Palmer, P.I., Fraser, A., & Reay, D.S., 2012. Seasonal variability of tropical wetland \(CH_4\) emissions: the role of the methanogen-available carbon pool. Biogeosciences 9(8), 2821-2830. http:// dx.doi.org/10.5194/bg-9-2821-2012.

    Boone, D.R. 1991. Ecology of methanogens. In: Rogers, J.E. & Whitman, W.B., eds. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. Washington: American Society for Microbiology, 39-51.

    Conrad, R., 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediment. FEMS Microbiol. Ecol. 28(3), 193-202. http://dx.doi. org/10.1111/j.1574-6941.1999.tb00575.x.

    Cunha-Santino, M.B., Bianchini Júnior, I., Gianotti, E.P., & Silva, E., 2006. Degradação anaeróbia de macrófitas aquáticas da Lagoa do Infernão: metanogênese. In: Santos, J.E., Pires, J.S., & Moschini, L.E., eds. Estudos Integrados em Ecossistemas - Estação Ecológica de Jataí. São Carlos: EdUFSCar, 143-158.

    Cunha-Santino, M.B., & Bianchini Júnior, I., 2013. Tropical macrophyte degradation dynamics in freshwater sediments: relationship to greenhouse gas production. J. Soils Sediments 13(8), 1461-1468. http://dx.doi.org/10.1007/s11368-013-0735-x

    Dise, N.,2009. Biogeochemical dynamics III: the critical role of carbon in wetlands. In: Barker, T., & Maltby, E. eds. The wetlands handbook. Chichester: Wiley-Blackwell, 249-265. http://dx.doi. org/10.1002/9781444315813.ch11.

    Elsey-Quirk, T., & Cornwell, J.C., 2022. Organic matter and nutrient cycling in coastal wetlands and submerged aquatic ecosystems in an age of rapid environmental change -The Anthropocene. J. Mar. Sci. Eng. 10(8), 1096. http://dx.doi.org/10.3390/ jmse10081096.

    Fenchel, T., King, G.M., & Blackburn, T.H., 2012. Bacterial biogeochemistry: the ecophysiology of mineral cycling. Amsterdam: Academic Press, 312 p.

    Gilvear, D.J., & Bradley, C., 2009. Hydrological dynamics II: groundwater and hydrological connectivity. In: Barker, T., & Maltby, E., eds. The wetlands handbook. Chichester: Wiley-Blackwell, 169-193. http://dx.doi.org/10.1002/9781444315813.ch7.

    Gimenes, K.Z., Cunha-Santino, M.B., & Bianchini Júnior, I., 2010. Decomposição de matéria orgânica alóctone e autóctone em ecossistemas aquáticos. Oecol. Aust. 14(4), 1075-1112. http://dx.doi. org/10.4257/oeco.2010.1404.13.

    Gonçalves Junior, J.F., de Souza Rezende, R., Gregório, R.S., & Valentin, G.C., 2014. Relationship between dynamics of litterfall and riparian plant species in a tropical stream. Limnologica 44, 40-48. http://dx.doi.org/10.1016/j.limno.2013.05.010.

    Grootjans, A.P., & Van Diggelen, R., 2009. Hydrological dynamics III: hydro-ecology. In: Barker, T., & Maltby, E., eds. The wetlands handbook. Chichester: Wiley-Blackwell, 194-212. http://dx.doi. org/10.1002/9781444315813.ch8.

    Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. & Troxler, T.G., 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Switzerland: IPCC.

    Kiene, R.P., 1991. Production and consumption of methane in aquatic systems. In: Rogers, J.E., & Whitman, W.B., eds. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. Washington: American Society for Microbiology, 111-146.

    Kirk, G., 2004. The biochemistry of submerged soils. Chichester: John Wiley & Sons, 291p. http://dx.doi. org/10.1002/047086303X

    Kleber, M., 2010. What is recalcitrant soil organic matter? Environ. Chem. 7(4), 320-332. http://dx.doi. org/10.1071/EN10006.

    Li, Y., Chen, Z., Chen, J., Castellano, M.J., Ye, C., Zhang, N., Miao, Y., Zheng, H., Li, J., & Ding, W., 2022. Oxygen availability regulates the quality of soil dissolved organic matter by mediating microbial metabolism and iron oxidation. Glob. Chang. Biol. 28(24), 7410-7427. PMid:36149390. http://dx.doi. org/10.1111/gcb.16445.

    Mitsch, W.J., & Gosselink, J.G., 2015. Wetlands. Hoboken: John Wiley & Sons, 752 p

    Romeiro, F., & Bianchini Júnior, I., 2008. Kinetic pathways for anaerobic decomposition of Ludwigia inclinata. Hydrobiologia 607(1), 103-111. http:// dx.doi.org/10.1007/s10750-008-9370-8.

    Schlegel, H.G., 1997. Microbiología general. Barcelona: Omega, 672 p.

    Segers, R., 1998. Methane production and methane consumption: a review of process underlying wetlands methane fluxes. Biogeochemistry 41(1), 23-51. http://dx.doi.org/10.1023/A:1005929032764.

    Six, J., & Jastrow, J.D., 2002. Organic matter turnover. In: Lal, R., ed. Encyclopedia of soil science. New York: Marcel Dekker, 936-942.

    Stevenson, F.J., 1994. Humus chemistry: genesis, composition, reactions. New York: John Willey, 512 p.

    Thurman, E.M., 1985. Organic geochemistry of natural waters. Dordrecht: Martinus Nijhoff/Dr W. Junk, 497 p. http://dx.doi.org/10.1007/978-94-009- 5095-5.

    Torn, M.S., Swanston, C.W., Castanha, C., & Trumbore, S.E., 2009. Storage and turnover of organic matter in soil. In: Senesi, N., Xing, B., & Huang, P.M., eds. Biophysico-chemical processes involving natural nonliving organic matter in environmental. Hoboken: John Wiley & Sons, 219-271. http:// dx.doi.org/10.1002/9780470494950.ch6.

    Wang, H., Ho, M., Flanagan, N., & Richardson, C.J., 2021. The effects of hydrological management on methane emissions from Southeastern shrub bogs of the USA. Wetlands 41(7), 87. http://dx.doi. org/10.1007/s13157-021-01486-7.

    Wetzel, R.G., 2006. Wetlands ecosystem processes. In: Batzer, D.P. & Sharitz, R.R. (Eds.) Ecology of freshwater and estuarine wetlands. Berkeley: University of California Press, 285-312.

    Excerpted from

    Cunha-Santino, M. B. D., & Bianchini Júnior, I. (2023). Reviewing the organic matter processing by wetlands. Acta Limnologica Brasiliensia, 35, e19. Accessed December 2023 from https://www.scielo.br/j/alb/a/ypwb635W6PGrxXSZWPtgt4S CC-BY


    7.4: Organic matter storage in wetlands is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Marcela Bianchessi da Cunha-Santino1 and Irineu Bianchini Júnior.